Pub Date : 2025-02-05DOI: 10.1016/j.bandc.2025.106271
Ellis M. Parsons, Mathew R. Hammerstrom, Anya Nazaroff, Mckinley Kemp, Patrick Montgomery, Sarah Macoun, Olave E. Krigolson
Objective
A body of electroencephalographic (EEG) research demonstrates that executive functioning (EF) differences exist in autistic people. Here, we aimed to investigate how and to what extent these EF differences appear in people with high autistic traits in contrast to a low autistic traits comparison.
Methods
The present study used a series of EEG markers (frontal theta power, frontal beta power, the reward positivity ERP component, and the P300 ERP component) to examine potential differences in EF over the course of gambling and oddball tasks. Qualitative research measures to include the perspectives of the autistic people who took part in the study were also used.
Results
While frontal theta and beta power differed between groups, we observed no significant component or correlational differences. However, it was found that high autistic traits participants perceived their task performance as worse than low autistic traits participants despite task performance being equal across groups.
Conclusions
EF differences as measured by frontal theta and beta power were observed across groups. Self-perception of task performance may differ in high autistic traits participants when asked to complete tasks under a time constraint.
{"title":"Analyzing the effects of high autistic traits on neural markers of learning and memory: An EEG approach analysis","authors":"Ellis M. Parsons, Mathew R. Hammerstrom, Anya Nazaroff, Mckinley Kemp, Patrick Montgomery, Sarah Macoun, Olave E. Krigolson","doi":"10.1016/j.bandc.2025.106271","DOIUrl":"10.1016/j.bandc.2025.106271","url":null,"abstract":"<div><h3>Objective</h3><div>A body of electroencephalographic (EEG) research demonstrates that executive functioning (EF) differences exist in autistic people. Here, we aimed to investigate how and to what extent these EF differences appear in people with high autistic traits in contrast to a low autistic traits comparison.</div></div><div><h3>Methods</h3><div>The present study used a series of EEG markers (frontal theta power, frontal beta power, the reward positivity ERP component, and the P300 ERP component) to examine potential differences in EF over the course of gambling and oddball tasks. Qualitative research measures to include the perspectives of the autistic people who took part in the study were also used.</div></div><div><h3>Results</h3><div>While frontal theta and beta power differed between groups, we observed no significant component or correlational differences. However, it was found that high autistic traits participants perceived their task performance as worse than low autistic traits participants despite task performance being equal across groups.</div></div><div><h3>Conclusions</h3><div>EF differences as measured by frontal theta and beta power were observed across groups. Self-perception of task performance may differ in high autistic traits participants when asked to complete tasks under a time constraint.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"184 ","pages":"Article 106271"},"PeriodicalIF":2.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-05DOI: 10.1016/j.bandc.2025.106269
Bo Chen , Li Ding , Shouwen Zhang , Zhongqi Liu
Overload represents a significant challenge for pilots in flight, with a substantial impact on flight safety. Currently, the primary method of protection is the utilization of inflatable anti-G suit to address instances where blood is concentrated in the lower extremities. The inflatable air pressure of the anti-G suit varies in response to different overload conditions, which in turn affects the pilot’s sensory and brain loads. However, this change has not yet been fully explored. To investigate the neural effects of pressure from the anti-G suit under different degrees of overload, this paper employs a pressurized simulation methodology. The subjects’ brain state changes during the simulation are measured through electroencephalogram (EEG), and comparative calculations are performed using microstate and functional connectivity. The final results demonstrate that varying inflation levels of the bladder anti-G suit can influence the microstate and functional connectivity. The Duration, Coverage, Occurrence, and transition probability (TP) characteristics of microstate C demonstrated significant variance across three distinct levels of overload. The mean increase in Phase Locking Value (PLV) for overload 3 relative to the absence of overload was 13.8%, and the number of channel synchronizations underwent a transition from 7 to 62.
{"title":"Neural impact of anti-G suits on pilots: Analyzing microstates and functional connectivity","authors":"Bo Chen , Li Ding , Shouwen Zhang , Zhongqi Liu","doi":"10.1016/j.bandc.2025.106269","DOIUrl":"10.1016/j.bandc.2025.106269","url":null,"abstract":"<div><div>Overload represents a significant challenge for pilots in flight, with a substantial impact on flight safety. Currently, the primary method of protection is the utilization of inflatable anti-G suit to address instances where blood is concentrated in the lower extremities. The inflatable air pressure of the anti-G suit varies in response to different overload conditions, which in turn affects the pilot’s sensory and brain loads. However, this change has not yet been fully explored. To investigate the neural effects of pressure from the anti-G suit under different degrees of overload, this paper employs a pressurized simulation methodology. The subjects’ brain state changes during the simulation are measured through electroencephalogram (EEG), and comparative calculations are performed using microstate and functional connectivity. The final results demonstrate that varying inflation levels of the bladder anti-G suit can influence the microstate and functional connectivity. The Duration, Coverage, Occurrence, and transition probability (TP) characteristics of microstate C demonstrated significant variance across three distinct levels of overload. The mean increase in Phase Locking Value (PLV) for overload 3 relative to the absence of overload was 13.8%, and the number of channel synchronizations underwent a transition from 7 to 62.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"184 ","pages":"Article 106269"},"PeriodicalIF":2.2,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-03DOI: 10.1016/j.bandc.2025.106272
Olivia Afonso , Alberto Avilés , Carlos J. Álvarez
Writing recruits a vast neural network underpinning both linguistic and motor processes. Previous studies have tried to identify which brain areas underpin both the linguistic and motor aspects of writing. However, little is known about the neural substrate of the lexical and sublexical “routes” for spelling. In this fMRI study, participants (n = 25) copied or saw/read symbols or words. Words varied in lexical frequency and phonology-to-orthography (P-O) consistency. Anterior parts of the inferior frontal gyrus were selectively recruited when copying P-O inconsistent words, while the right Heschl’s gyrus was recruited only when copying consistent words. Non-specific motor and linguistic areas were also identified. Our results contribute to our knowledge of the neural substrate of the lexical and sublexical spelling routes and suggest that different brain areas might be involved in the lexical processing of input (reading) and output (writing) orthography.
{"title":"Neural correlates of lexical, sublexical and motor processes in word handwriting","authors":"Olivia Afonso , Alberto Avilés , Carlos J. Álvarez","doi":"10.1016/j.bandc.2025.106272","DOIUrl":"10.1016/j.bandc.2025.106272","url":null,"abstract":"<div><div>Writing recruits a vast neural network underpinning both linguistic and motor processes. Previous studies have tried to identify which brain areas underpin both the linguistic and motor aspects of writing. However, little is known about the neural substrate of the lexical and sublexical “routes” for spelling. In this fMRI study, participants (n = 25) copied or saw/read symbols or words. Words varied in lexical frequency and phonology-to-orthography (P-O) consistency. Anterior parts of the inferior frontal gyrus were selectively recruited when copying P-O inconsistent words, while the right Heschl’s gyrus was recruited only when copying consistent words. Non-specific motor and linguistic areas were also identified. Our results contribute to our knowledge of the neural substrate of the lexical and sublexical spelling routes and suggest that different brain areas might be involved in the lexical processing of input (reading) and output (writing) orthography.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"184 ","pages":"Article 106272"},"PeriodicalIF":2.2,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143147930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bandc.2024.106245
Zhenni Gao , Xinuo Qiao , Kelong Lu , Xinyue Wang , Ning Hao
Malevolent creativity refers to the ability to generate ideas that cause harm to oneself or others. While previous research has touched on how personality traits influence malevolent creative behavior, the neural mechanisms involved remain underexplored. This study investigated the brain patterns associated with malevolent creative behavior and how these patterns are mediated by dark personality traits (Machiavellianism, narcissism, and psychopathy) and positive traits (internalization, symbolization, and honesty-humility). Our findings revealed that Machiavellianism mediated the relationship between the amplitude of low-frequency fluctuation (ALFF) in the left medial superior frontal gyrus (mSFG), pallidum (PAL), and middle temporal gyrus (MTG) and malevolent creative behavior, particularly in actions like hurting people or playing tricks. Psychopathy similarly mediated the link between the ALFF in the right orbital middle frontal gyrus (oMFG), right mSFG, left PAL, and left MTG and malevolent creative behavior. Additionally, Machiavellianism negatively mediated the relationship between the fractional ALFF (fALFF) of the left parahippocampal gyrus (PHG) and hurting people, as well as between the fALFF of the left inferior occipital gyrus (IOG) and playing tricks. The ALFF in the left mSFG and left MTG predicted playing tricks but also negatively predicted internalization and honesty-humility, which in turn reduced engagement in playing tricks. Finally, the fALFF of the left IOG negatively predicted playing tricks and positively predicted internalization, which again decreased playing tricks. These findings highlight the complex interaction between brain activity, personality traits, and malevolent creative behavior, offering a potential path for targeted interventions and further research into this interesting phenomenon.
{"title":"Dynamic amplitude of low-frequency fluctuation links dark personalities to malevolent creative behavior","authors":"Zhenni Gao , Xinuo Qiao , Kelong Lu , Xinyue Wang , Ning Hao","doi":"10.1016/j.bandc.2024.106245","DOIUrl":"10.1016/j.bandc.2024.106245","url":null,"abstract":"<div><div>Malevolent creativity refers to the ability to generate ideas that cause harm to oneself or others. While previous research has touched on how personality traits influence malevolent creative behavior, the neural mechanisms involved remain underexplored. This study investigated the brain patterns associated with malevolent creative behavior and how these patterns are mediated by dark personality traits (Machiavellianism, narcissism, and psychopathy) and positive traits (internalization, symbolization, and honesty-humility). Our findings revealed that Machiavellianism mediated the relationship between the amplitude of low-frequency fluctuation (ALFF) in the left medial superior frontal gyrus (mSFG), pallidum (PAL), and middle temporal gyrus (MTG) and malevolent creative behavior, particularly in actions like hurting people or playing tricks. Psychopathy similarly mediated the link between the ALFF in the right orbital middle frontal gyrus (oMFG), right mSFG, left PAL, and left MTG and malevolent creative behavior. Additionally, Machiavellianism negatively mediated the relationship between the fractional ALFF (fALFF) of the left parahippocampal gyrus (PHG) and hurting people, as well as between the fALFF of the left inferior occipital gyrus (IOG) and playing tricks. The ALFF in the left mSFG and left MTG predicted playing tricks but also negatively predicted internalization and honesty-humility, which in turn reduced engagement in playing tricks. Finally, the fALFF of the left IOG negatively predicted playing tricks and positively predicted internalization, which again decreased playing tricks. These findings highlight the complex interaction between brain activity, personality traits, and malevolent creative behavior, offering a potential path for targeted interventions and further research into this interesting phenomenon.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"183 ","pages":"Article 106245"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bandc.2024.106243
Stefania Lucia , Francesco Di Russo
The purpose of this study was to investigate anticipatory functions in temporal cognition, identifying the presence of proactive brain processing specifically preceding a time discrimination task. To this aim, two discriminative response tasks (DRTs) were employed: a feature DRT and a temporal (T-DRT). While the F-DRT required discrimination among different geometrical shapes, the T-DRT required discrimination among different stimulus durations. Specifically, this study investigated the role of premotor and prefrontal cortices, and sensory visual areas in preparatory activity preceding time-processing by electroencephalographic methods and analyzing the event-related potential (ERP). ERP components associated with motor (the BP), cognitive (the pN), and sensory readiness (the vN) were analyzed on 21 participants completing the two DRTs. The results support the involvement of all considered brain areas in temporal cognition but extend this information by indicating that these areas can be engaged during the preparation phase before the stimulus is delivered. Furthermore, the T-DRT requires strong anticipatory activity in the PFC likely serving as a moderator of upcoming motor responses. Finally, visual areas were greatly engaged in the early phase of sensory readiness of the T-DRT probably to create top-down low-level representations of imminent events to facilitate perception.
{"title":"Identification of anticipatory brain activity in a time discrimination task","authors":"Stefania Lucia , Francesco Di Russo","doi":"10.1016/j.bandc.2024.106243","DOIUrl":"10.1016/j.bandc.2024.106243","url":null,"abstract":"<div><div>The purpose of this study was to investigate anticipatory functions in temporal cognition, identifying the presence of proactive brain processing specifically preceding a time discrimination task. To this aim, two discriminative response tasks (DRTs) were employed: a feature DRT and a temporal (T-DRT). While the F-DRT required discrimination among different geometrical shapes, the T-DRT required discrimination among different stimulus durations. Specifically, this study investigated the role of premotor and prefrontal cortices, and sensory visual areas in preparatory activity preceding time-processing by electroencephalographic methods and analyzing the event-related potential (ERP). ERP components associated with motor (the BP), cognitive (the pN), and sensory readiness (the vN) were analyzed on 21 participants completing the two DRTs. The results support the involvement of all considered brain areas in temporal cognition but extend this information by indicating that these areas can be engaged during the preparation phase before the stimulus is delivered. Furthermore, the T-DRT requires strong anticipatory activity in the PFC likely serving as a moderator of upcoming motor responses. Finally, visual areas were greatly engaged in the early phase of sensory readiness of the T-DRT probably to create top-down low-level representations of imminent events to facilitate perception.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"183 ","pages":"Article 106243"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142787951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bandc.2024.106244
Laura Angioletti , Katia Rovelli , Michela Balconi
This study examined behavioral, electrophysiological (EEG), and autonomic responses to stress during the preparation and speech stages of five discourses among 26 adults. Participants underwent an increasingly stressful job-interview based on a modified Trier Social Stress Test, receiving feedback from an evaluative board. Findings showed increased RTs, higher cardiovascular responses [Pulse Volume Amplitude (PVA), and Heart Rate Variability (HRV)] and generalized increases in EEG frequency bands (delta, theta, alpha, beta, gamma) during the speech compared to the preparation stage. The rising emotional salience of the discourses induced a negativity bias and extensive low-frequency band activation (delta and theta) across the scalp in response to emotional demands. High-frequency bands exhibited a plateau effect, indicating less cognitive involvement as the discourses progressed. In our opinion, a possible interpretation is that this effect could be due to habituation mechanisms or coping strategies. Autonomic results revealed significant variations in PVA, with higher levels during the first discourse preparation, indicating substantial cognitive effort. Despite increased emotional arousal, participants managed stress effectively, as evidenced by increased HRV during the speech stage. Overall, during progressively increasing ecological psychosocial stress, individuals displayed marked emotional reactions in terms of low-frequency bands and cardiovascular indices, particularly during the first speeches rather than the preparation stages of an interview.
{"title":"Be ready to manage stress “Before” and “After” a critical event. What the EEG and autonomic correlates tell us","authors":"Laura Angioletti , Katia Rovelli , Michela Balconi","doi":"10.1016/j.bandc.2024.106244","DOIUrl":"10.1016/j.bandc.2024.106244","url":null,"abstract":"<div><div>This study examined behavioral, electrophysiological (EEG), and autonomic responses to stress during the preparation and speech stages of five discourses among 26 adults. Participants underwent an increasingly stressful job-interview based on a modified Trier Social Stress Test, receiving feedback from an evaluative board. Findings showed increased RTs, higher cardiovascular responses [Pulse Volume Amplitude (PVA), and Heart Rate Variability (HRV)] and generalized increases in EEG frequency bands (delta, theta, alpha, beta, gamma) during the speech compared to the preparation stage. The rising emotional salience of the discourses induced a negativity bias and extensive low-frequency band activation (delta and theta) across the scalp in response to emotional demands. High-frequency bands exhibited a plateau effect, indicating less cognitive involvement as the discourses progressed. In our opinion, a possible interpretation is that this effect could be due to habituation mechanisms or coping strategies. Autonomic results revealed significant variations in PVA, with higher levels during the first discourse preparation, indicating substantial cognitive effort. Despite increased emotional arousal, participants managed stress effectively, as evidenced by increased HRV during the speech stage. Overall, during progressively increasing ecological psychosocial stress, individuals displayed marked emotional reactions in terms of low-frequency bands and cardiovascular indices, particularly during the first speeches rather than the preparation stages of an interview.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"183 ","pages":"Article 106244"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142808338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bandc.2024.106253
Giovanni Federico , François Osiurak , Ciro Rosario Ilardi , Carlo Cavaliere , Vincenzo Alfano , Liberatore Tramontano , Giuseppina Ciccarelli , Celeste Cafaro , Marco Salvatore , Maria Antonella Brandimonte
Most recent accounts highlight the importance of two aspects of cognition in the implicit understanding of the physical world: semantic knowledge (the ability to recognize, categorize, and relate concepts) and mechanical knowledge (the capability to comprehend how things mechanically work). However, how the human brain may integrate these cognitive processes remains largely unexplored. Here, we use functional magnetic resonance imaging to investigate this integration employing a novel free-viewing task. Participants viewed images depicting object-tool pairs that were either mechanically consistent (e.g., nail – steel hammer) or mechanically inconsistent (e.g., scarf – steel hammer). These pairs were situated on a metal plate atop a table, with a stripped electrical cable in contact with the plate that could be plugged in or out from the electrical line, rendering the tools either electrified or not. Task-based functional connectivity revealed an interplay among specific left-brain regions – the middle temporal (MTG), inferior frontal (IFG), and supramarginal (SMG) gyri – during the processing of mechanical actions and physics principles, associating the activity of these areas with mechanical knowledge (SMG) and object-related semantic knowledge (MTG). Notably, the IFG was active during both types of processing, suggesting a critical role of this region in multi-modal information integration. These findings support the most recent integrated neurocognitive models of physical understanding, deepening our comprehension of how we make sense of the physical world.
{"title":"Mechanical and semantic knowledge mediate the implicit understanding of the physical world","authors":"Giovanni Federico , François Osiurak , Ciro Rosario Ilardi , Carlo Cavaliere , Vincenzo Alfano , Liberatore Tramontano , Giuseppina Ciccarelli , Celeste Cafaro , Marco Salvatore , Maria Antonella Brandimonte","doi":"10.1016/j.bandc.2024.106253","DOIUrl":"10.1016/j.bandc.2024.106253","url":null,"abstract":"<div><div>Most recent accounts highlight the importance of two aspects of cognition in the implicit understanding of the physical world: semantic knowledge (the ability to recognize, categorize, and relate concepts) and mechanical knowledge (the capability to comprehend how things mechanically work). However, how the human brain may integrate these cognitive processes remains largely unexplored. Here, we use functional magnetic resonance imaging to investigate this integration employing a novel free-viewing task. Participants viewed images depicting object-tool pairs that were either mechanically consistent (<em>e.g.</em>, nail – steel hammer) or mechanically inconsistent (<em>e.g.</em>, scarf – steel hammer). These pairs were situated on a metal plate atop a table, with a stripped electrical cable in contact with the plate that could be plugged in or out from the electrical line, rendering the tools either electrified or not. Task-based functional connectivity revealed an interplay among specific left-brain regions – the middle temporal (MTG), inferior frontal (IFG), and supramarginal (SMG) gyri – during the processing of mechanical actions and physics principles, associating the activity of these areas with mechanical knowledge (SMG) and object-related semantic knowledge (MTG). Notably, the IFG was active during both types of processing, suggesting a critical role of this region in multi-modal information integration. These findings support the most recent integrated neurocognitive models of physical understanding, deepening our comprehension of how we make sense of the physical world.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"183 ","pages":"Article 106253"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bandc.2024.106257
Irene Bellin , Arianna Menardi , Serena De Pellegrin , Antonio Luigi Bisogno , Carlo Semenza , Maurizio Corbetta , Antonino Vallesi
Mixed Transcortical Aphasia (MTA) is an infrequent aphasic syndrome, characterized by poor comprehension and production in oral language abilities and poor performance in written language abilities. However, individuals with MTA typically retain the ability to repeat. Our patient, a woman who suffered from a left hemisphere ischemic stroke involving perisylvian areas, presented with repetition preserved for words, non-words, sentences and numbers, together with marginally preserved reading abilities. Given the peculiarity of her linguistic profile, we employed recently developed lesion-based approaches for probabilistic estimation of white matter disconnections to reveal which white matter tracts are likely to be related to her preserved linguistic abilities. Our analysis revealed that while the left arcuate fasciculus (AF)—a tract commonly associated with repetition—was partially affected, its posterior and long branches were estimated to be disconnected, whereas the anterior branch remained intact. This disconnection pattern may explain the pattern of preserved repetition abilities observed in this MTA patient.
{"title":"Advanced disconnectomic analyses reveal repetition pathways in a case of mixed transcortical aphasia","authors":"Irene Bellin , Arianna Menardi , Serena De Pellegrin , Antonio Luigi Bisogno , Carlo Semenza , Maurizio Corbetta , Antonino Vallesi","doi":"10.1016/j.bandc.2024.106257","DOIUrl":"10.1016/j.bandc.2024.106257","url":null,"abstract":"<div><div>Mixed Transcortical Aphasia (MTA) is an infrequent aphasic syndrome, characterized by poor comprehension and production in oral language abilities and poor performance in written language abilities. However, individuals with MTA typically retain the ability to repeat. Our patient, a woman who suffered from a left hemisphere ischemic stroke involving perisylvian areas, presented with repetition preserved for words, non-words, sentences and numbers, together with marginally preserved reading abilities. Given the peculiarity of her linguistic profile, we employed recently developed lesion-based approaches for probabilistic estimation of white matter disconnections to reveal which white matter tracts are likely to be related to her preserved linguistic abilities. Our analysis revealed that while the left arcuate fasciculus (AF)—a tract commonly associated with repetition—was partially affected, its posterior and long branches were estimated to be disconnected, whereas the anterior branch remained intact. This disconnection pattern may explain the pattern of preserved repetition abilities observed in this MTA patient.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"183 ","pages":"Article 106257"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01DOI: 10.1016/j.bandc.2024.106254
Christopher E. Niemczak , James C. Ford , Robert M. Roth , Samantha M. Leigh , Jeffrey Parsonnet , Christina Martin , Shreve O. Soule , Theresa M. Haron , Jay C. Buckey Jr. , Glenn R. Wylie
Persistent cognitive fatigue (CF) is the most reported symptom in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), but little is known about its underlying neural basis. This pilot study examined fMRI brain activation patterns during a fatiguing task in those with and without PASC. We hypothesized that individuals with PASC would show changes in CF-related brain activation within fatigue network. Participants were 10 adults with PASC and persistent CF and 10 age- and gender-matched healthy controls. The 2-back working memory task was used during fMRI to induce CF. Patients with PASC reported greater CF, as measured using a Visual Analogue Scale of Fatigue (VAS-F), throughout the task. The relationship of brain activation in the fatigue network to increased CF during the fatiguing task did not differ between groups. There were, however, more areas inside and outside the fatigue network that were activated in the PASC group as reported CF increased. The relationship between brain activation and scores on the 2-back did differ between groups, with the PASC group showing more frontal activation. Findings suggest that individuals with PASC and CF may need to exert greater mental effort during demanding cognitive tasks, reflected in recruitment of a broader network of brain regions.
{"title":"Neuroimaging markers of cognitive fatigue in individuals with post-acute sequelae of SARS-CoV-2 infection","authors":"Christopher E. Niemczak , James C. Ford , Robert M. Roth , Samantha M. Leigh , Jeffrey Parsonnet , Christina Martin , Shreve O. Soule , Theresa M. Haron , Jay C. Buckey Jr. , Glenn R. Wylie","doi":"10.1016/j.bandc.2024.106254","DOIUrl":"10.1016/j.bandc.2024.106254","url":null,"abstract":"<div><div>Persistent cognitive fatigue (CF) is the most reported symptom in Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), but little is known about its underlying neural basis. This pilot study examined fMRI brain activation patterns during a fatiguing task in those with and without PASC. We hypothesized that individuals with PASC would show changes in CF-related brain activation within fatigue network. Participants were 10 adults with PASC and persistent CF and 10 age- and gender-matched healthy controls. The 2-back working memory task was used during fMRI to induce CF. Patients with PASC reported greater CF, as measured using a Visual Analogue Scale of Fatigue (VAS-F), throughout the task. The relationship of brain activation in the fatigue network to increased CF during the fatiguing task did not differ between groups. There were, however, more areas inside and outside the fatigue network that were activated in the PASC group as reported CF increased. The relationship between brain activation and scores on the 2-back did differ between groups, with the PASC group showing more frontal activation. Findings suggest that individuals with PASC and CF may need to exert greater mental effort during demanding cognitive tasks, reflected in recruitment of a broader network of brain regions.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"183 ","pages":"Article 106254"},"PeriodicalIF":2.2,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142820123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-21DOI: 10.1016/j.bandc.2025.106270
Di Wu , Pan Zhang , Shengdong Ye , Na Liu
The present study focused on the influence of training methods and task difficulty on event-related potentials (ERPs) at early and later visual perceptual learning (VPL) on a coherent motion identification task. Sixty participants were randomly divided into four groups for training with an adaptive stimulus (staircase group) and three constant stimuli (moderate, easy and difficult intensity groups). Visual performance improved in the staircase and moderate training groups but not in the easy or difficult training groups. ERP results revealed a decreased P1 amplitude in all groups. Additionally, staircase training increased the frontal P2 amplitude; accordingly, moderate constant stimulus training reduced the frontal P2 amplitude and increased the frontal N2 amplitude. Importantly, the change in frontal P2 amplitude was correlated with improved performance, indicating the involvement of cortices responsible for higher-order cognitive processes in VPL. Additionally, the difference in frontal P2 amplitude changes suggests the modulation of training methods (adaptive and consistent) on the role of attention in VPL. Furthermore, although behavior changes were not observed, the brains in the easy and difficult groups still presented different ERP changes. In summary, the results provide electrophysiological evidence for the modulation of training methods and task difficulty in VPL-related neuroplasticity.
{"title":"Training method and difficulty modulate electrophysiological correlates of visual perceptual learning","authors":"Di Wu , Pan Zhang , Shengdong Ye , Na Liu","doi":"10.1016/j.bandc.2025.106270","DOIUrl":"10.1016/j.bandc.2025.106270","url":null,"abstract":"<div><div>The present study focused on the influence of training methods and task difficulty on event-related potentials (ERPs) at early and later visual perceptual learning (VPL) on a coherent motion identification task. Sixty participants were randomly divided into four groups for training with an adaptive stimulus (staircase group) and three constant stimuli (moderate, easy and difficult intensity groups). Visual performance improved in the staircase and moderate training groups but not in the easy or difficult training groups. ERP results revealed a decreased P1 amplitude in all groups. Additionally, staircase training increased the frontal P2 amplitude; accordingly, moderate constant stimulus training reduced the frontal P2 amplitude and increased the frontal N2 amplitude. Importantly, the change in frontal P2 amplitude was correlated with improved performance, indicating the involvement of cortices responsible for higher-order cognitive processes in VPL. Additionally, the difference in frontal P2 amplitude changes suggests the modulation of training methods (adaptive and consistent) on the role of attention in VPL. Furthermore, although behavior changes were not observed, the brains in the easy and difficult groups still presented different ERP changes. In summary, the results provide electrophysiological evidence for the modulation of training methods and task difficulty in VPL-related neuroplasticity.</div></div>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"184 ","pages":"Article 106270"},"PeriodicalIF":2.2,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}