濒危的阿尔卑斯山:高山湖泊是持久性和新出现污染物的储藏库

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-01 DOI:10.1016/j.jconhyd.2024.104361
Paolo Pastorino , Damià Barceló , Marino Prearo
{"title":"濒危的阿尔卑斯山:高山湖泊是持久性和新出现污染物的储藏库","authors":"Paolo Pastorino ,&nbsp;Damià Barceló ,&nbsp;Marino Prearo","doi":"10.1016/j.jconhyd.2024.104361","DOIUrl":null,"url":null,"abstract":"<div><p>Despite their remote locations, high-mountain lakes located in the Alps are vulnerable to chemical pollution. This discussion explores the important aspects of these lakes as repositories of Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs), elucidating their sources and implications for both the environment and human health. In terms of the presence of POPs in high-altitude lakes of the Alps, 14 studies have been identified examining the occurrence of polychlorinated biphenyls, dichlorodiphenyltrichloroethane an its metabolites, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons. The bulk of research on POPs in high-mountain lakes is concentrated in the Italian Alps (63%), followed by Switzerland (22%), Austria (12%), and France (3%), respectively. Sediment is predominantly investigated (65%), followed by fish (33%) and water (2%). Similarly, in relation to the presence of CECs in high-mountain lakes of the Alps, six studies have been identified investigating the occurrence of musks, perfluorinated compounds, and microplastics. Investigations into CECs predominantly occur in Switzerland (42%), France (33%), and Italy (25%), with fish samples (muscle and liver) being the primary focus (46%), followed by sediment (17%) and water (17%). Other compartments like zooplankton, frog/tadpoles, and snow remain less explored. The discussion also shed light on various pathways through which pollutants reach these remote landscapes, including atmospheric transport, glacial meltwater, and human activities. Protecting these pristine peaks demands concerted efforts encompassing ongoing research, vigilant monitoring, and dedicated conservation initiatives.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alps at risk: High-mountain lakes as reservoirs of persistent and emerging contaminants\",\"authors\":\"Paolo Pastorino ,&nbsp;Damià Barceló ,&nbsp;Marino Prearo\",\"doi\":\"10.1016/j.jconhyd.2024.104361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Despite their remote locations, high-mountain lakes located in the Alps are vulnerable to chemical pollution. This discussion explores the important aspects of these lakes as repositories of Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs), elucidating their sources and implications for both the environment and human health. In terms of the presence of POPs in high-altitude lakes of the Alps, 14 studies have been identified examining the occurrence of polychlorinated biphenyls, dichlorodiphenyltrichloroethane an its metabolites, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons. The bulk of research on POPs in high-mountain lakes is concentrated in the Italian Alps (63%), followed by Switzerland (22%), Austria (12%), and France (3%), respectively. Sediment is predominantly investigated (65%), followed by fish (33%) and water (2%). Similarly, in relation to the presence of CECs in high-mountain lakes of the Alps, six studies have been identified investigating the occurrence of musks, perfluorinated compounds, and microplastics. Investigations into CECs predominantly occur in Switzerland (42%), France (33%), and Italy (25%), with fish samples (muscle and liver) being the primary focus (46%), followed by sediment (17%) and water (17%). Other compartments like zooplankton, frog/tadpoles, and snow remain less explored. The discussion also shed light on various pathways through which pollutants reach these remote landscapes, including atmospheric transport, glacial meltwater, and human activities. Protecting these pristine peaks demands concerted efforts encompassing ongoing research, vigilant monitoring, and dedicated conservation initiatives.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000652\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000652","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

阿尔卑斯山的高山湖泊尽管地处偏远,却很容易受到化学污染。本文探讨了这些湖泊作为持久性有机污染物(POPs)和新关注污染物(CECs)储存库的重要方面,阐明了它们的来源及其对环境和人类健康的影响。关于阿尔卑斯山高海拔湖泊中持久性有机污染物的存在情况,已确定有 14 项研究对多氯联苯、二氯二苯三氯乙烷及其代谢物、多溴联苯醚和多环芳烃的存在情况进行了调查。对高山湖泊中持久性有机污染物的研究主要集中在意大利阿尔卑斯山(63%),其次分别是瑞士(22%)、奥地利(12%)和法国(3%)。调查对象主要是沉积物(65%),其次是鱼类(33%)和水(2%)。同样,关于阿尔卑斯山高山湖泊中是否存在 CECs,已确定有六项研究调查了麝香、全氟化合物和微塑料的存在情况。对 CECs 的调查主要集中在瑞士(42%)、法国(33%)和意大利(25%),其中以鱼类样本(肌肉和肝脏)为主(46%),其次是沉积物(17%)和水(17%)。对浮游动物、青蛙/蝌蚪和雪等其他成分的研究仍然较少。讨论还揭示了污染物到达这些偏远地区的各种途径,包括大气传输、冰川融水和人类活动。保护这些原始山峰需要各方共同努力,包括持续研究、警惕监测和专门的保护措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alps at risk: High-mountain lakes as reservoirs of persistent and emerging contaminants

Despite their remote locations, high-mountain lakes located in the Alps are vulnerable to chemical pollution. This discussion explores the important aspects of these lakes as repositories of Persistent Organic Pollutants (POPs) and Contaminants of Emerging Concern (CECs), elucidating their sources and implications for both the environment and human health. In terms of the presence of POPs in high-altitude lakes of the Alps, 14 studies have been identified examining the occurrence of polychlorinated biphenyls, dichlorodiphenyltrichloroethane an its metabolites, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons. The bulk of research on POPs in high-mountain lakes is concentrated in the Italian Alps (63%), followed by Switzerland (22%), Austria (12%), and France (3%), respectively. Sediment is predominantly investigated (65%), followed by fish (33%) and water (2%). Similarly, in relation to the presence of CECs in high-mountain lakes of the Alps, six studies have been identified investigating the occurrence of musks, perfluorinated compounds, and microplastics. Investigations into CECs predominantly occur in Switzerland (42%), France (33%), and Italy (25%), with fish samples (muscle and liver) being the primary focus (46%), followed by sediment (17%) and water (17%). Other compartments like zooplankton, frog/tadpoles, and snow remain less explored. The discussion also shed light on various pathways through which pollutants reach these remote landscapes, including atmospheric transport, glacial meltwater, and human activities. Protecting these pristine peaks demands concerted efforts encompassing ongoing research, vigilant monitoring, and dedicated conservation initiatives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1