{"title":"基于爬行动物搜索算法与短时记忆神经网络相结合的高校管理优化","authors":"Qinquan Sun , Jing Su","doi":"10.1016/j.sasc.2024.200101","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the lack of accuracy and difficulty to meet the actual requirements of the poor students' financial assistance in the management of smart colleges and universities. Therefore, a precise funding model for poor students is constructed on the basis of improved reptile search algorithm and short-term memory neural network. The performance of the algorithm is evaluated by test function, rank sum test and combinatorial model validation. In test function 5, the algorithm is 2.90E+01±6.04E-03, which is lower than the comparison algorithm, and begins to converge after about 10 iterations, and the convergence speed is significantly higher than that of the comparison algorithm. In the rank sum test, the experimental results of the comparison algorithm on most test functions are less than 5 %. In the combined model verification, the fitness result of the maximum convergence times was 0.2203 %, and the classification accuracy reached 98.7 %, which was better than the comparison model. The precise funding model of poor students proposed in this study has important application value in the management of smart colleges and universities, which can effectively improve the accuracy of poor students' funding and meet the actual needs. At the same time, the high accuracy and fast convergence of the model provide a new idea and method for smart university management.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200101"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772941924000309/pdfft?md5=03aa2b14a4bfb8eae2549552c69cd61e&pid=1-s2.0-S2772941924000309-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimization of university management based on reptile search algorithm combined with short-duration memory neural network\",\"authors\":\"Qinquan Sun , Jing Su\",\"doi\":\"10.1016/j.sasc.2024.200101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the lack of accuracy and difficulty to meet the actual requirements of the poor students' financial assistance in the management of smart colleges and universities. Therefore, a precise funding model for poor students is constructed on the basis of improved reptile search algorithm and short-term memory neural network. The performance of the algorithm is evaluated by test function, rank sum test and combinatorial model validation. In test function 5, the algorithm is 2.90E+01±6.04E-03, which is lower than the comparison algorithm, and begins to converge after about 10 iterations, and the convergence speed is significantly higher than that of the comparison algorithm. In the rank sum test, the experimental results of the comparison algorithm on most test functions are less than 5 %. In the combined model verification, the fitness result of the maximum convergence times was 0.2203 %, and the classification accuracy reached 98.7 %, which was better than the comparison model. The precise funding model of poor students proposed in this study has important application value in the management of smart colleges and universities, which can effectively improve the accuracy of poor students' funding and meet the actual needs. At the same time, the high accuracy and fast convergence of the model provide a new idea and method for smart university management.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000309/pdfft?md5=03aa2b14a4bfb8eae2549552c69cd61e&pid=1-s2.0-S2772941924000309-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772941924000309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941924000309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimization of university management based on reptile search algorithm combined with short-duration memory neural network
Due to the lack of accuracy and difficulty to meet the actual requirements of the poor students' financial assistance in the management of smart colleges and universities. Therefore, a precise funding model for poor students is constructed on the basis of improved reptile search algorithm and short-term memory neural network. The performance of the algorithm is evaluated by test function, rank sum test and combinatorial model validation. In test function 5, the algorithm is 2.90E+01±6.04E-03, which is lower than the comparison algorithm, and begins to converge after about 10 iterations, and the convergence speed is significantly higher than that of the comparison algorithm. In the rank sum test, the experimental results of the comparison algorithm on most test functions are less than 5 %. In the combined model verification, the fitness result of the maximum convergence times was 0.2203 %, and the classification accuracy reached 98.7 %, which was better than the comparison model. The precise funding model of poor students proposed in this study has important application value in the management of smart colleges and universities, which can effectively improve the accuracy of poor students' funding and meet the actual needs. At the same time, the high accuracy and fast convergence of the model provide a new idea and method for smart university management.