{"title":"进行切割:膜重塑的多尺度模拟","authors":"Jeriann Beiter, Gregory A. Voth","doi":"10.1016/j.sbi.2024.102831","DOIUrl":null,"url":null,"abstract":"<div><p>Biological membranes are dynamic heterogeneous materials, and their shape and organization are tightly coupled to the properties of the proteins in and around them. However, the length scales of lipid and protein dynamics are far below the size of membrane-bound organelles, much less an entire cell. Therefore, multiscale modeling approaches are often necessary to build a comprehensive picture of the interplay of these factors, and have provided critical insights into our understanding of membrane dynamics. Here, we review computational methods for studying membrane remodeling, as well as passive and active examples of protein-driven membrane remodeling. As the field advances towards the modeling of key aspects of organelles and whole cells – an increasingly accessible regime of study – we summarize here recent successes and offer comments on future trends.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102831"},"PeriodicalIF":6.1000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making the cut: Multiscale simulation of membrane remodeling\",\"authors\":\"Jeriann Beiter, Gregory A. Voth\",\"doi\":\"10.1016/j.sbi.2024.102831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biological membranes are dynamic heterogeneous materials, and their shape and organization are tightly coupled to the properties of the proteins in and around them. However, the length scales of lipid and protein dynamics are far below the size of membrane-bound organelles, much less an entire cell. Therefore, multiscale modeling approaches are often necessary to build a comprehensive picture of the interplay of these factors, and have provided critical insights into our understanding of membrane dynamics. Here, we review computational methods for studying membrane remodeling, as well as passive and active examples of protein-driven membrane remodeling. As the field advances towards the modeling of key aspects of organelles and whole cells – an increasingly accessible regime of study – we summarize here recent successes and offer comments on future trends.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"87 \",\"pages\":\"Article 102831\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000587\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000587","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Making the cut: Multiscale simulation of membrane remodeling
Biological membranes are dynamic heterogeneous materials, and their shape and organization are tightly coupled to the properties of the proteins in and around them. However, the length scales of lipid and protein dynamics are far below the size of membrane-bound organelles, much less an entire cell. Therefore, multiscale modeling approaches are often necessary to build a comprehensive picture of the interplay of these factors, and have provided critical insights into our understanding of membrane dynamics. Here, we review computational methods for studying membrane remodeling, as well as passive and active examples of protein-driven membrane remodeling. As the field advances towards the modeling of key aspects of organelles and whole cells – an increasingly accessible regime of study – we summarize here recent successes and offer comments on future trends.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation