对流自聚集中的数值扩散和湍流混合

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-05-12 DOI:10.1029/2023MS004151
L. Silvestri, M. Saraceni, P. Bongioannini Cerlini
{"title":"对流自聚集中的数值扩散和湍流混合","authors":"L. Silvestri,&nbsp;M. Saraceni,&nbsp;P. Bongioannini Cerlini","doi":"10.1029/2023MS004151","DOIUrl":null,"url":null,"abstract":"<p>Convective Self-Aggregation (CSA) is a common feature of idealized numerical simulations of the tropical atmosphere in Radiative-Convective Equilibrium (RCE). However, at coarse grid resolution where deep convection is not fully resolved, the occurrence of this phenomenon is extremely sensitive to subgrid-scale processes. This study examines the role of mixing and entrainment, provided by the turbulence model and the implicit numerical diffusion. The study compares the results of two models, WRF and SAM, by varying turbulence models, initial conditions, and horizontal spatial resolution. At a coarse grid resolution of 3 km, the removal of turbulent mixing prevents CSA in models with low numerical diffusivity but is preserved in models with high numerical diffusivity. When the horizontal grid resolution is refined to 1 km, CSA can only be achieved by increasing explicit turbulent mixing, even with a small amount of shallow clouds. Therefore, the sensitivity of CSA to horizontal grid resolution is not primarily caused by the decrease in shallow clouds. The analysis of the total water path spectrum suggests that the amplitude of initial humidity perturbations introduced by convection in the free troposphere is the key factor. This amplitude is regulated by turbulent mixing and diffusion at small scales. Prior to the onset of CSA, increased mixing makes updrafts more sensitive to the dryness of the free troposphere, which strengthens the moisture-convection feedback. This leads to an increased distance between convective cores and a stronger humidity perturbation in the free troposphere, which can destabilize the RCE state.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004151","citationCount":"0","resultStr":"{\"title\":\"Numerical Diffusion and Turbulent Mixing in Convective Self-Aggregation\",\"authors\":\"L. Silvestri,&nbsp;M. Saraceni,&nbsp;P. Bongioannini Cerlini\",\"doi\":\"10.1029/2023MS004151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Convective Self-Aggregation (CSA) is a common feature of idealized numerical simulations of the tropical atmosphere in Radiative-Convective Equilibrium (RCE). However, at coarse grid resolution where deep convection is not fully resolved, the occurrence of this phenomenon is extremely sensitive to subgrid-scale processes. This study examines the role of mixing and entrainment, provided by the turbulence model and the implicit numerical diffusion. The study compares the results of two models, WRF and SAM, by varying turbulence models, initial conditions, and horizontal spatial resolution. At a coarse grid resolution of 3 km, the removal of turbulent mixing prevents CSA in models with low numerical diffusivity but is preserved in models with high numerical diffusivity. When the horizontal grid resolution is refined to 1 km, CSA can only be achieved by increasing explicit turbulent mixing, even with a small amount of shallow clouds. Therefore, the sensitivity of CSA to horizontal grid resolution is not primarily caused by the decrease in shallow clouds. The analysis of the total water path spectrum suggests that the amplitude of initial humidity perturbations introduced by convection in the free troposphere is the key factor. This amplitude is regulated by turbulent mixing and diffusion at small scales. Prior to the onset of CSA, increased mixing makes updrafts more sensitive to the dryness of the free troposphere, which strengthens the moisture-convection feedback. This leads to an increased distance between convective cores and a stronger humidity perturbation in the free troposphere, which can destabilize the RCE state.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023MS004151\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004151\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023MS004151","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对流自聚集(CSA)是处于辐射对流平衡(RCE)状态的热带大气理想化数值模拟的一个常见特征。然而,在粗网格分辨率下,深层对流无法完全解析,这种现象的发生对子网格尺度过程极为敏感。本研究探讨了湍流模型和隐式数值扩散所提供的混合和夹带作用。研究通过改变湍流模型、初始条件和水平空间分辨率,比较了 WRF 和 SAM 两种模型的结果。在 3 公里的粗网格分辨率下,去除湍流混合可防止低数值扩散率模型中的 CSA,但在高数值扩散率模型中却得以保留。当水平网格分辨率细化到 1 千米时,即使有少量浅层云,也只能通过增加显式湍流混合来实现 CSA。因此,CSA 对水平网格分辨率的敏感性主要不是由浅层云的减少引起的。对总水路谱的分析表明,自由对流层对流引入的初始湿度扰动幅度是关键因素。这一振幅受小尺度湍流混合和扩散的调节。在 CSA 开始之前,混合的增加使上升气流对自由对流层的干燥度更加敏感,从而加强了湿度-对流反馈。这导致对流核心之间的距离增大,自由对流层的湿度扰动增强,从而破坏 RCE 状态的稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Diffusion and Turbulent Mixing in Convective Self-Aggregation

Convective Self-Aggregation (CSA) is a common feature of idealized numerical simulations of the tropical atmosphere in Radiative-Convective Equilibrium (RCE). However, at coarse grid resolution where deep convection is not fully resolved, the occurrence of this phenomenon is extremely sensitive to subgrid-scale processes. This study examines the role of mixing and entrainment, provided by the turbulence model and the implicit numerical diffusion. The study compares the results of two models, WRF and SAM, by varying turbulence models, initial conditions, and horizontal spatial resolution. At a coarse grid resolution of 3 km, the removal of turbulent mixing prevents CSA in models with low numerical diffusivity but is preserved in models with high numerical diffusivity. When the horizontal grid resolution is refined to 1 km, CSA can only be achieved by increasing explicit turbulent mixing, even with a small amount of shallow clouds. Therefore, the sensitivity of CSA to horizontal grid resolution is not primarily caused by the decrease in shallow clouds. The analysis of the total water path spectrum suggests that the amplitude of initial humidity perturbations introduced by convection in the free troposphere is the key factor. This amplitude is regulated by turbulent mixing and diffusion at small scales. Prior to the onset of CSA, increased mixing makes updrafts more sensitive to the dryness of the free troposphere, which strengthens the moisture-convection feedback. This leads to an increased distance between convective cores and a stronger humidity perturbation in the free troposphere, which can destabilize the RCE state.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
Reduction of the Tropical Atmospheric Dynamics Into Shallow-Water Analogs: A Formulation Analysis Circumpolar Transport and Overturning Strength Inferred From Satellite Observables Using Deep Learning in an Eddying Southern Ocean Channel Model Multi-Decadal Soil Moisture and Crop Yield Variability—A Case Study With the Community Land Model (CLM5) Coupling Soil Erosion and Sediment Transport Processes With the Variable Infiltration Capacity Model (VIC-SED) for Applications Suitable With Coarse Spatial and Temporal Resolutions Using Shortened Spin-Ups to Speed Up Ocean Biogeochemical Model Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1