膜蛋白折叠过程中的螺旋重组:通过模拟细菌眼色素(BR)片段获得的启示。

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. Biomembranes Pub Date : 2024-05-11 DOI:10.1016/j.bbamem.2024.184333
Hindol Chatterjee , Anshuman J. Mahapatra , Martin Zacharias , Neelanjana Sengupta
{"title":"膜蛋白折叠过程中的螺旋重组:通过模拟细菌眼色素(BR)片段获得的启示。","authors":"Hindol Chatterjee ,&nbsp;Anshuman J. Mahapatra ,&nbsp;Martin Zacharias ,&nbsp;Neelanjana Sengupta","doi":"10.1016/j.bbamem.2024.184333","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane protein folding is distinct from folding of soluble proteins. Conformational acquisition in major membrane protein subclasses can be delineated into insertion and folding processes. An exception to the “two stage” folding, later developed to “three stage” folding, is observed within the last two helices in bacteriorhodopsin (BR), a system that serves as a model membrane protein. We employ a reductionist approach to understand interplay of molecular factors underlying the apparent defiance. Leveraging available solution NMR structures, we construct, sample in silico, and analyze partially (PIn) and fully inserted (FIn) BR membrane states. The membrane lateral C-terminal helix (CH) in PIn is markedly prone to transient structural distortions over microsecond timescales; a disorder prone region (DPR) is thereby identified. While clear transmembrane propensities are not acquired, the distortions induce alterations in local membrane curvature and area per lipid. Importantly, energetic decompositions reveal that overall, the N-terminal helix (NH) is thermodynamically more stable in the PIn. Higher overall stability of the FIn arises from favorable interactions between the NH and the CH. Our results establish lack of spontaneous transition of the PIn to the FIn, and attributes their partitioning to barriers that exceed those accessible with thermal fluctuations. This work paves the way for further detailed studies aimed at determining the thermo-kinetic roles of the initial five helices, or complementary external factors, in complete helical folding and insertion in BR. We comment that complementing such efforts with the growing field of machine learning assisted energy landscape searches may offer unprecedented insights.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 5","pages":"Article 184333"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Helical reorganization in the context of membrane protein folding: Insights from simulations with bacteriorhodopsin (BR) fragments\",\"authors\":\"Hindol Chatterjee ,&nbsp;Anshuman J. Mahapatra ,&nbsp;Martin Zacharias ,&nbsp;Neelanjana Sengupta\",\"doi\":\"10.1016/j.bbamem.2024.184333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Membrane protein folding is distinct from folding of soluble proteins. Conformational acquisition in major membrane protein subclasses can be delineated into insertion and folding processes. An exception to the “two stage” folding, later developed to “three stage” folding, is observed within the last two helices in bacteriorhodopsin (BR), a system that serves as a model membrane protein. We employ a reductionist approach to understand interplay of molecular factors underlying the apparent defiance. Leveraging available solution NMR structures, we construct, sample in silico, and analyze partially (PIn) and fully inserted (FIn) BR membrane states. The membrane lateral C-terminal helix (CH) in PIn is markedly prone to transient structural distortions over microsecond timescales; a disorder prone region (DPR) is thereby identified. While clear transmembrane propensities are not acquired, the distortions induce alterations in local membrane curvature and area per lipid. Importantly, energetic decompositions reveal that overall, the N-terminal helix (NH) is thermodynamically more stable in the PIn. Higher overall stability of the FIn arises from favorable interactions between the NH and the CH. Our results establish lack of spontaneous transition of the PIn to the FIn, and attributes their partitioning to barriers that exceed those accessible with thermal fluctuations. This work paves the way for further detailed studies aimed at determining the thermo-kinetic roles of the initial five helices, or complementary external factors, in complete helical folding and insertion in BR. We comment that complementing such efforts with the growing field of machine learning assisted energy landscape searches may offer unprecedented insights.</p></div>\",\"PeriodicalId\":8831,\"journal\":{\"name\":\"Biochimica et biophysica acta. Biomembranes\",\"volume\":\"1866 5\",\"pages\":\"Article 184333\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Biomembranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005273624000646\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624000646","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

膜蛋白折叠不同于可溶性蛋白的折叠。主要膜蛋白亚类的构象获得可分为插入和折叠过程。在作为膜蛋白模型的细菌眼色素(BR)系统中,观察到了 "两阶段 "折叠(后来发展为 "三阶段 "折叠)的例外情况。我们采用还原论的方法来了解导致这种明显违抗的分子因素之间的相互作用。利用现有的溶液核磁共振结构,我们构建了部分(PIn)和完全插入(FIn)BR 膜状态,并对其进行了硅学取样和分析。在 PIn 中,膜侧 C 端螺旋(CH)在微秒时间尺度上明显容易发生瞬时结构扭曲;由此确定了一个易紊乱区域(DPR)。虽然没有获得明确的跨膜倾向性,但这种扭曲会引起局部膜曲率和单位脂质面积的改变。重要的是,能量分解显示,总体而言,N 端螺旋(NH)在 PIn 中的热力学稳定性更高。NH 与 CH 之间的有利相互作用使 FIn 整体稳定性更高。我们的研究结果表明,PIn 缺乏向 FIn 的自发转变,并将它们的分离归因于超过热波动所能达到的壁垒。这项工作为进一步详细研究铺平了道路,这些研究旨在确定最初五个螺旋或互补外部因素在完全螺旋折叠和插入 BR 中的热动力学作用。我们认为,将这些工作与不断发展的机器学习辅助能量景观搜索领域相辅相成,可能会提供前所未有的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Helical reorganization in the context of membrane protein folding: Insights from simulations with bacteriorhodopsin (BR) fragments

Membrane protein folding is distinct from folding of soluble proteins. Conformational acquisition in major membrane protein subclasses can be delineated into insertion and folding processes. An exception to the “two stage” folding, later developed to “three stage” folding, is observed within the last two helices in bacteriorhodopsin (BR), a system that serves as a model membrane protein. We employ a reductionist approach to understand interplay of molecular factors underlying the apparent defiance. Leveraging available solution NMR structures, we construct, sample in silico, and analyze partially (PIn) and fully inserted (FIn) BR membrane states. The membrane lateral C-terminal helix (CH) in PIn is markedly prone to transient structural distortions over microsecond timescales; a disorder prone region (DPR) is thereby identified. While clear transmembrane propensities are not acquired, the distortions induce alterations in local membrane curvature and area per lipid. Importantly, energetic decompositions reveal that overall, the N-terminal helix (NH) is thermodynamically more stable in the PIn. Higher overall stability of the FIn arises from favorable interactions between the NH and the CH. Our results establish lack of spontaneous transition of the PIn to the FIn, and attributes their partitioning to barriers that exceed those accessible with thermal fluctuations. This work paves the way for further detailed studies aimed at determining the thermo-kinetic roles of the initial five helices, or complementary external factors, in complete helical folding and insertion in BR. We comment that complementing such efforts with the growing field of machine learning assisted energy landscape searches may offer unprecedented insights.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
期刊最新文献
Tuning expression of GPCRs for the secretory pathway in the baculovirus-insect cell expression system. Phase-separated cationic giant unilamellar vesicles as templates for the polymerization of tetraethyl orthosilicate (TEOS). Identification of a sorting motif for Tspan3 to MHCII compartments in human B cells. Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers. Human cathelicidin LL-37 rapidly disrupted colonic epithelial integrity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1