脂肪间充质干细胞通过调节Th1/Th17反应和扩大Th2/Treg反应改善实验性自身免疫性脑脊髓炎

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-14 DOI:10.1002/cbin.12171
Simin Zargarani, Maryam J. Tavaf, Azita Soltanmohammadi, Esmaeil Yazdanpanah, Rasoul Baharlou, Bahman Yousefi, Bizhan Sadighimoghaddam, Seyed-Alireza Esmaeili, Dariush Haghmorad
{"title":"脂肪间充质干细胞通过调节Th1/Th17反应和扩大Th2/Treg反应改善实验性自身免疫性脑脊髓炎","authors":"Simin Zargarani,&nbsp;Maryam J. Tavaf,&nbsp;Azita Soltanmohammadi,&nbsp;Esmaeil Yazdanpanah,&nbsp;Rasoul Baharlou,&nbsp;Bahman Yousefi,&nbsp;Bizhan Sadighimoghaddam,&nbsp;Seyed-Alireza Esmaeili,&nbsp;Dariush Haghmorad","doi":"10.1002/cbin.12171","DOIUrl":null,"url":null,"abstract":"<p>The most common central nervous system (CNS) inflammatory disease is multiple sclerosis (MS), modeled using experimental autoimmune encephalomyelitis (EAE). Mesenchymal stem cells (MSCs) exhibit potent immunomodulatory capabilities, including the suppression of immune cell functions and anti-inflammatory cytokine production. Female C57BL/6 mice (8–10 weeks old) were divided into three groups: 1. Control, 2. Allogeneic MSCs (ALO) treatment, and 3. Syngeneic MSCs (SYN) treatment. To induce EAE, myelin oligodendrocyte glycoprotein was injected subcutaneously with complete Freund's adjuvant, followed by intraperitoneal pertussis toxin. On Days 6 and 12 postimmunization, the treatment groups received intraperitoneal injections of 2 × 10<sup>6</sup> MSCs. Daily clinical and weight assessments were performed, and on Day 25, the mice were euthanized. At the end of the period, brain histological analysis was conducted to quantify lymphocyte infiltration. T-cell characteristics were determined using enzyme-linked immunosorbent assay and Real-time polymerase chain reaction (RT-PCR). The assessment of transcription factor expression levels in the CNS was also performed using RT-PCR. Compared to the control group, both the allogeneic (ALO) and syngeneic (SYN) groups demonstrated significantly reduced disease progression. The maximum clinical scores for the control, ALO, and SYN groups were 4.4 ± 0.1, 2.4 ± 0.2, and 2.1 ± 0.2, respectively (ALO and SYN vs. Control: <i>p</i> &lt; .001). In comparison to the control group, histological studies demonstrated that the allogeneic and syngeneic groups had less lymphocytic infiltration (ALO: 1.4 ± 0.1, SYN: 1.2 ± 0.2, and control: 2.8 ± 0.15; <i>p</i> &lt; .001) and demyelination (ALO: 1.2 ± 0.15, SYN: 1.1 ± 0.1 and control: 2.9 ± 0.1, <i>p</i> &lt; .001). ALO and SYN groups had lower expression of Th1 and Th17 cytokines and transcription factors (IFN-γ: 0.067, 0.051; STAT4: 0.189, 0.162; T-bet: 0.175, 0.163; IL-17: 0.074, 0.061; STAT3: 0.271, 0.253; ROR-γt: 0.163, 0.149, respectively) compared to the control group on Day 25 following EAE induction. Additionally, ALO and SYN groups compared to the control group, expressed more Th2 and Treg cytokines and transcription factors (IL-4: 4.25, 4.63; STAT6: 2.78, 2.96; GATA3: 2.91, 3.08; IL-27: 2.32, 2.46, IL-33: 2.71, 2.85; TGF-β: 4.8, 5.05; IL-10: 4.71, 4.93; CTLA-4: 7.72, 7.95; PD1: 4.12,4.35; Foxp3: 3.82,4.08, respectively). This research demonstrated that MSCs possess the potential to be a therapeutic option for MS and related CNS inflammatory disorders. Their immunomodulatory properties, coupled with the observed reductions in disease severity, lymphocytic infiltration, and demyelination, indicate that MSCs could play a crucial role in altering the course of MS by mitigating inflammatory immune responses and promoting regulatory immune processes. These findings open up new possibilities for the development of MSC-based therapies for MS, and further investigation and clinical trials may be warranted to explore their efficacy and safety in human patients.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adipose-derived mesenchymal stem cells ameliorates experimental autoimmune encephalomyelitis via modulation of Th1/Th17 and expansion of Th2/Treg responses\",\"authors\":\"Simin Zargarani,&nbsp;Maryam J. Tavaf,&nbsp;Azita Soltanmohammadi,&nbsp;Esmaeil Yazdanpanah,&nbsp;Rasoul Baharlou,&nbsp;Bahman Yousefi,&nbsp;Bizhan Sadighimoghaddam,&nbsp;Seyed-Alireza Esmaeili,&nbsp;Dariush Haghmorad\",\"doi\":\"10.1002/cbin.12171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The most common central nervous system (CNS) inflammatory disease is multiple sclerosis (MS), modeled using experimental autoimmune encephalomyelitis (EAE). Mesenchymal stem cells (MSCs) exhibit potent immunomodulatory capabilities, including the suppression of immune cell functions and anti-inflammatory cytokine production. Female C57BL/6 mice (8–10 weeks old) were divided into three groups: 1. Control, 2. Allogeneic MSCs (ALO) treatment, and 3. Syngeneic MSCs (SYN) treatment. To induce EAE, myelin oligodendrocyte glycoprotein was injected subcutaneously with complete Freund's adjuvant, followed by intraperitoneal pertussis toxin. On Days 6 and 12 postimmunization, the treatment groups received intraperitoneal injections of 2 × 10<sup>6</sup> MSCs. Daily clinical and weight assessments were performed, and on Day 25, the mice were euthanized. At the end of the period, brain histological analysis was conducted to quantify lymphocyte infiltration. T-cell characteristics were determined using enzyme-linked immunosorbent assay and Real-time polymerase chain reaction (RT-PCR). The assessment of transcription factor expression levels in the CNS was also performed using RT-PCR. Compared to the control group, both the allogeneic (ALO) and syngeneic (SYN) groups demonstrated significantly reduced disease progression. The maximum clinical scores for the control, ALO, and SYN groups were 4.4 ± 0.1, 2.4 ± 0.2, and 2.1 ± 0.2, respectively (ALO and SYN vs. Control: <i>p</i> &lt; .001). In comparison to the control group, histological studies demonstrated that the allogeneic and syngeneic groups had less lymphocytic infiltration (ALO: 1.4 ± 0.1, SYN: 1.2 ± 0.2, and control: 2.8 ± 0.15; <i>p</i> &lt; .001) and demyelination (ALO: 1.2 ± 0.15, SYN: 1.1 ± 0.1 and control: 2.9 ± 0.1, <i>p</i> &lt; .001). ALO and SYN groups had lower expression of Th1 and Th17 cytokines and transcription factors (IFN-γ: 0.067, 0.051; STAT4: 0.189, 0.162; T-bet: 0.175, 0.163; IL-17: 0.074, 0.061; STAT3: 0.271, 0.253; ROR-γt: 0.163, 0.149, respectively) compared to the control group on Day 25 following EAE induction. Additionally, ALO and SYN groups compared to the control group, expressed more Th2 and Treg cytokines and transcription factors (IL-4: 4.25, 4.63; STAT6: 2.78, 2.96; GATA3: 2.91, 3.08; IL-27: 2.32, 2.46, IL-33: 2.71, 2.85; TGF-β: 4.8, 5.05; IL-10: 4.71, 4.93; CTLA-4: 7.72, 7.95; PD1: 4.12,4.35; Foxp3: 3.82,4.08, respectively). This research demonstrated that MSCs possess the potential to be a therapeutic option for MS and related CNS inflammatory disorders. Their immunomodulatory properties, coupled with the observed reductions in disease severity, lymphocytic infiltration, and demyelination, indicate that MSCs could play a crucial role in altering the course of MS by mitigating inflammatory immune responses and promoting regulatory immune processes. These findings open up new possibilities for the development of MSC-based therapies for MS, and further investigation and clinical trials may be warranted to explore their efficacy and safety in human patients.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12171\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12171","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最常见的中枢神经系统(CNS)炎症性疾病是多发性硬化症(MS),其模型是实验性自身免疫性脑脊髓炎(EAE)。间充质干细胞(MSCs)具有强大的免疫调节能力,包括抑制免疫细胞功能和产生抗炎细胞因子。雌性C57BL/6小鼠(8-10周大)分为三组:1.对照组;2.异体间充质干细胞(ALO)治疗组;3.同种异体间充质干细胞(ALS)治疗组。合成间充质干细胞(SYN)治疗组。为了诱发EAE,用完全弗氏佐剂皮下注射髓鞘少突胶质细胞糖蛋白,然后腹腔注射百日咳毒素。免疫后第6天和第12天,治疗组腹腔注射2×106个间叶干细胞。每天对小鼠进行临床和体重评估,并在第25天将小鼠安乐死。治疗结束后,对小鼠进行脑组织学分析,量化淋巴细胞浸润情况。使用酶联免疫吸附试验和实时聚合酶链反应(RT-PCR)确定 T 细胞特征。中枢神经系统中转录因子的表达水平也通过 RT-PCR 进行了评估。与对照组相比,同种异体(ALO)组和同种异体(SYN)组的疾病进展均显著减少。对照组、ALO 组和 SYN 组的最大临床评分分别为(4.4 ± 0.1)、(2.4 ± 0.2)和(2.1 ± 0.2)(ALO 组和 SYN 组与对照组相比:P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adipose-derived mesenchymal stem cells ameliorates experimental autoimmune encephalomyelitis via modulation of Th1/Th17 and expansion of Th2/Treg responses

The most common central nervous system (CNS) inflammatory disease is multiple sclerosis (MS), modeled using experimental autoimmune encephalomyelitis (EAE). Mesenchymal stem cells (MSCs) exhibit potent immunomodulatory capabilities, including the suppression of immune cell functions and anti-inflammatory cytokine production. Female C57BL/6 mice (8–10 weeks old) were divided into three groups: 1. Control, 2. Allogeneic MSCs (ALO) treatment, and 3. Syngeneic MSCs (SYN) treatment. To induce EAE, myelin oligodendrocyte glycoprotein was injected subcutaneously with complete Freund's adjuvant, followed by intraperitoneal pertussis toxin. On Days 6 and 12 postimmunization, the treatment groups received intraperitoneal injections of 2 × 106 MSCs. Daily clinical and weight assessments were performed, and on Day 25, the mice were euthanized. At the end of the period, brain histological analysis was conducted to quantify lymphocyte infiltration. T-cell characteristics were determined using enzyme-linked immunosorbent assay and Real-time polymerase chain reaction (RT-PCR). The assessment of transcription factor expression levels in the CNS was also performed using RT-PCR. Compared to the control group, both the allogeneic (ALO) and syngeneic (SYN) groups demonstrated significantly reduced disease progression. The maximum clinical scores for the control, ALO, and SYN groups were 4.4 ± 0.1, 2.4 ± 0.2, and 2.1 ± 0.2, respectively (ALO and SYN vs. Control: p < .001). In comparison to the control group, histological studies demonstrated that the allogeneic and syngeneic groups had less lymphocytic infiltration (ALO: 1.4 ± 0.1, SYN: 1.2 ± 0.2, and control: 2.8 ± 0.15; p < .001) and demyelination (ALO: 1.2 ± 0.15, SYN: 1.1 ± 0.1 and control: 2.9 ± 0.1, p < .001). ALO and SYN groups had lower expression of Th1 and Th17 cytokines and transcription factors (IFN-γ: 0.067, 0.051; STAT4: 0.189, 0.162; T-bet: 0.175, 0.163; IL-17: 0.074, 0.061; STAT3: 0.271, 0.253; ROR-γt: 0.163, 0.149, respectively) compared to the control group on Day 25 following EAE induction. Additionally, ALO and SYN groups compared to the control group, expressed more Th2 and Treg cytokines and transcription factors (IL-4: 4.25, 4.63; STAT6: 2.78, 2.96; GATA3: 2.91, 3.08; IL-27: 2.32, 2.46, IL-33: 2.71, 2.85; TGF-β: 4.8, 5.05; IL-10: 4.71, 4.93; CTLA-4: 7.72, 7.95; PD1: 4.12,4.35; Foxp3: 3.82,4.08, respectively). This research demonstrated that MSCs possess the potential to be a therapeutic option for MS and related CNS inflammatory disorders. Their immunomodulatory properties, coupled with the observed reductions in disease severity, lymphocytic infiltration, and demyelination, indicate that MSCs could play a crucial role in altering the course of MS by mitigating inflammatory immune responses and promoting regulatory immune processes. These findings open up new possibilities for the development of MSC-based therapies for MS, and further investigation and clinical trials may be warranted to explore their efficacy and safety in human patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1