基于 GA-LSTM 速度预测的增程车辆 DDQN 能源管理

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Energy and AI Pub Date : 2024-04-30 DOI:10.1016/j.egyai.2024.100367
Laiwei Lu, Hong Zhao, Fuliang Xv, Yong Luo, Junjie Chen, Xiaoyun Ding
{"title":"基于 GA-LSTM 速度预测的增程车辆 DDQN 能源管理","authors":"Laiwei Lu,&nbsp;Hong Zhao,&nbsp;Fuliang Xv,&nbsp;Yong Luo,&nbsp;Junjie Chen,&nbsp;Xiaoyun Ding","doi":"10.1016/j.egyai.2024.100367","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a dual deep Q-network (DDQN) energy management model based on long-short memory neural network (LSTM) speed prediction is proposed under the model predictive control (MPC) framework. The initial learning rate and neuron dropout probability of the LSTM speed prediction model are optimized by the genetic algorithm (GA). The prediction results show that the root-mean-square error of the GA-LSTM speed prediction method is smaller than the SVR method in different speed prediction horizons. The predicted demand power, the state of charge (SOC), and the demand power at the current moment are used as the state input of the agent, and the real-time control of the control strategy is realized by the MPC method. The simulation results show that the proposed control strategy reduces the equivalent fuel consumption by 0.0354 kg compared with DDQN, 0.8439 kg compared with ECMS, and 0.742 kg compared with the power-following control strategy. The difference between the proposed control strategy and the dynamic planning control strategy is only 0.0048 kg, 0.193%, while the SOC of the power battery remains stable. Finally, the hardware-in-the-loop simulation verifies that the proposed control strategy has good real-time performance.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"17 ","pages":"Article 100367"},"PeriodicalIF":9.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000338/pdfft?md5=765201343f5b2525062ac683ecde4d5d&pid=1-s2.0-S2666546824000338-main.pdf","citationCount":"0","resultStr":"{\"title\":\"GA-LSTM speed prediction-based DDQN energy management for extended-range vehicles\",\"authors\":\"Laiwei Lu,&nbsp;Hong Zhao,&nbsp;Fuliang Xv,&nbsp;Yong Luo,&nbsp;Junjie Chen,&nbsp;Xiaoyun Ding\",\"doi\":\"10.1016/j.egyai.2024.100367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a dual deep Q-network (DDQN) energy management model based on long-short memory neural network (LSTM) speed prediction is proposed under the model predictive control (MPC) framework. The initial learning rate and neuron dropout probability of the LSTM speed prediction model are optimized by the genetic algorithm (GA). The prediction results show that the root-mean-square error of the GA-LSTM speed prediction method is smaller than the SVR method in different speed prediction horizons. The predicted demand power, the state of charge (SOC), and the demand power at the current moment are used as the state input of the agent, and the real-time control of the control strategy is realized by the MPC method. The simulation results show that the proposed control strategy reduces the equivalent fuel consumption by 0.0354 kg compared with DDQN, 0.8439 kg compared with ECMS, and 0.742 kg compared with the power-following control strategy. The difference between the proposed control strategy and the dynamic planning control strategy is only 0.0048 kg, 0.193%, while the SOC of the power battery remains stable. Finally, the hardware-in-the-loop simulation verifies that the proposed control strategy has good real-time performance.</p></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"17 \",\"pages\":\"Article 100367\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000338/pdfft?md5=765201343f5b2525062ac683ecde4d5d&pid=1-s2.0-S2666546824000338-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文在模型预测控制(MPC)框架下提出了一种基于长短记忆神经网络(LSTM)速度预测的双深度 Q 网络(DDQN)能源管理模式。通过遗传算法(GA)优化了 LSTM 速度预测模型的初始学习率和神经元辍学概率。预测结果表明,在不同的速度预测范围内,GA-LSTM 速度预测方法的均方根误差小于 SVR 方法。将预测的需求功率、充电状态(SOC)和当前时刻的需求功率作为代理的状态输入,通过 MPC 方法实现控制策略的实时控制。仿真结果表明,与 DDQN 相比,所提出的控制策略降低了 0.0354 千克等效燃油消耗;与 ECMS 相比,降低了 0.8439 千克等效燃油消耗;与功率跟随控制策略相比,降低了 0.742 千克等效燃油消耗。在动力电池 SOC 保持稳定的情况下,拟议控制策略与动态规划控制策略之间的差异仅为 0.0048 千克,即 0.193%。最后,硬件在环仿真验证了所提出的控制策略具有良好的实时性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GA-LSTM speed prediction-based DDQN energy management for extended-range vehicles

In this paper, a dual deep Q-network (DDQN) energy management model based on long-short memory neural network (LSTM) speed prediction is proposed under the model predictive control (MPC) framework. The initial learning rate and neuron dropout probability of the LSTM speed prediction model are optimized by the genetic algorithm (GA). The prediction results show that the root-mean-square error of the GA-LSTM speed prediction method is smaller than the SVR method in different speed prediction horizons. The predicted demand power, the state of charge (SOC), and the demand power at the current moment are used as the state input of the agent, and the real-time control of the control strategy is realized by the MPC method. The simulation results show that the proposed control strategy reduces the equivalent fuel consumption by 0.0354 kg compared with DDQN, 0.8439 kg compared with ECMS, and 0.742 kg compared with the power-following control strategy. The difference between the proposed control strategy and the dynamic planning control strategy is only 0.0048 kg, 0.193%, while the SOC of the power battery remains stable. Finally, the hardware-in-the-loop simulation verifies that the proposed control strategy has good real-time performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
期刊最新文献
Predicting the thermal conductivity of polymer composites with one-dimensional oriented fillers using the combination of deep learning and ensemble learning A hybrid wind power prediction model based on seasonal feature decomposition and enhanced feature extraction Integrating local knowledge with ChatGPT-like large-scale language models for enhanced societal comprehension of carbon neutrality Optimization of a Bayesian game for Peer-to-Peer trading among prosumers under incomplete information via a CNN-LSTM-ATT Parameter sensitivity analysis for diesel spray penetration prediction based on GA-BP neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1