YOLO-DFT:基于云数据融合和迁移学习的电力系统设备维护对象检测方法

IF 2.5 Q2 ENGINEERING, INDUSTRIAL IET Collaborative Intelligent Manufacturing Pub Date : 2024-05-13 DOI:10.1049/cim2.12104
Kai Wang, Xu Zhang, Yifan Sun, Tianyi Xu, Jiqiao Li, Song Cao
{"title":"YOLO-DFT:基于云数据融合和迁移学习的电力系统设备维护对象检测方法","authors":"Kai Wang,&nbsp;Xu Zhang,&nbsp;Yifan Sun,&nbsp;Tianyi Xu,&nbsp;Jiqiao Li,&nbsp;Song Cao","doi":"10.1049/cim2.12104","DOIUrl":null,"url":null,"abstract":"<p>Object detection techniques have been widely used in power system equipment maintenance. However, in power systems, the accuracy of object detection is limited by the scarcity of publicly available datasets and the lack of scene pertinence. In order to solve these problems, an object detection method based on cloud data fusion and transfer learning (YOLO-DFT) for power system equipment maintenance is proposed. Illustratively, YOLO-DFT focuses on the object detection task involving birds and humans, generating a substantial and resilient human-bird dataset through cloud-based data fusion to compensate for the dearth of public datasets in the power system domain. By seamlessly integrating the YOLOv5 algorithm with a transfer learning strategy, a targeted detection mechanism for specific locations is meticulously formulated. The experimental results demonstrate that YOLO-DFT effectively addresses object detection challenges in power systems, achieving a Mean Average Precision (MAP) measure of 0.925 across all classes, thereby providing a valuable reference for the maintenance of power system equipment.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12104","citationCount":"0","resultStr":"{\"title\":\"YOLO-DFT: An object detection method based on cloud data fusion and transfer learning for power system equipment maintenance\",\"authors\":\"Kai Wang,&nbsp;Xu Zhang,&nbsp;Yifan Sun,&nbsp;Tianyi Xu,&nbsp;Jiqiao Li,&nbsp;Song Cao\",\"doi\":\"10.1049/cim2.12104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Object detection techniques have been widely used in power system equipment maintenance. However, in power systems, the accuracy of object detection is limited by the scarcity of publicly available datasets and the lack of scene pertinence. In order to solve these problems, an object detection method based on cloud data fusion and transfer learning (YOLO-DFT) for power system equipment maintenance is proposed. Illustratively, YOLO-DFT focuses on the object detection task involving birds and humans, generating a substantial and resilient human-bird dataset through cloud-based data fusion to compensate for the dearth of public datasets in the power system domain. By seamlessly integrating the YOLOv5 algorithm with a transfer learning strategy, a targeted detection mechanism for specific locations is meticulously formulated. The experimental results demonstrate that YOLO-DFT effectively addresses object detection challenges in power systems, achieving a Mean Average Precision (MAP) measure of 0.925 across all classes, thereby providing a valuable reference for the maintenance of power system equipment.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.12104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.12104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

物体检测技术已广泛应用于电力系统设备维护。然而,在电力系统中,公开数据集的稀缺性和场景相关性的缺乏限制了物体检测的准确性。为了解决这些问题,本文提出了一种基于云数据融合和迁移学习(YOLO-DFT)的电力系统设备维护对象检测方法。举例来说,YOLO-DFT 专注于涉及鸟类和人类的物体检测任务,通过基于云的数据融合生成大量有弹性的人鸟数据集,以弥补电力系统领域公共数据集的不足。通过将 YOLOv5 算法与迁移学习策略无缝集成,精心制定了针对特定位置的目标检测机制。实验结果表明,YOLO-DFT 有效地解决了电力系统中物体检测的难题,所有类别的平均精度(MAP)均达到 0.925,从而为电力系统设备的维护提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YOLO-DFT: An object detection method based on cloud data fusion and transfer learning for power system equipment maintenance

Object detection techniques have been widely used in power system equipment maintenance. However, in power systems, the accuracy of object detection is limited by the scarcity of publicly available datasets and the lack of scene pertinence. In order to solve these problems, an object detection method based on cloud data fusion and transfer learning (YOLO-DFT) for power system equipment maintenance is proposed. Illustratively, YOLO-DFT focuses on the object detection task involving birds and humans, generating a substantial and resilient human-bird dataset through cloud-based data fusion to compensate for the dearth of public datasets in the power system domain. By seamlessly integrating the YOLOv5 algorithm with a transfer learning strategy, a targeted detection mechanism for specific locations is meticulously formulated. The experimental results demonstrate that YOLO-DFT effectively addresses object detection challenges in power systems, achieving a Mean Average Precision (MAP) measure of 0.925 across all classes, thereby providing a valuable reference for the maintenance of power system equipment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Collaborative Intelligent Manufacturing
IET Collaborative Intelligent Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
9.10
自引率
2.40%
发文量
25
审稿时长
20 weeks
期刊介绍: IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly. The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).
期刊最新文献
Development of an artificial intelligence model for wire electrical discharge machining of Inconel 625 in biomedical applications Integrated modelling and simulation method of hybrid systems based on X language RETRACTION: A novel method of material demand forecasting for power supply chains in industrial applications A multimodal expert system for the intelligent monitoring and maintenance of transformers enhanced by multimodal language large model fine-tuning and digital twins RETRACTION: Analysis of a building collaborative platform for Industry 4.0 based on Building Information Modelling technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1