Kalle Kärhä, Lars Eliasson, Martin Kühmaier, Raffaele Spinelli
{"title":"工业圆材全机械化定尺剪切 (CTL) 采伐作业的燃料消耗和二氧化碳排放:综述","authors":"Kalle Kärhä, Lars Eliasson, Martin Kühmaier, Raffaele Spinelli","doi":"10.1007/s40725-024-00219-3","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>The aim of this literature review was to bring together the most relevant and recent research information on the fuel consumption and CO<sub>2</sub> emissions caused by the fully mechanized cut-to-length (CTL) harvesting machinery when applied to industrial roundwood. A specific aim of this review was to describe the effect of different independent variables on fuel consumption in fully mechanized CTL wood-harvesting operations.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>The review showed that the engine power of CTL forest machines accounts for most of the variance in the hourly fuel consumption of both harvesters and forwarders. We underline that the cubic-metre-based fuel consumption of CTL forest machines is correlated to the same factors that affect work productivity. Among all influencing factors, the average stem size, removal intensity and silvicultural treatment have the strongest effect on the fuel consumption per m<sup>3</sup> incurred with felling-processing, whereas forwarding distance, removal intensity and payload size are the main drivers of fuel consumption per m<sup>3</sup> as incurred with extraction. Further influencing factors are soil type (mineral soil or peatland), use of tracks, assortment type and machine size. Together with those factors, the role of the machine operator remains crucial and is dependent on two separate skills: the capacity to achieve high productivity, and that to apply fuel-saving driving techniques.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>The easiest way to reduce the carbon footprint of CTL harvesting machines is to increase the productivity of the harvesting work, for example by giving machine operator-specific training to utilize more efficient work methods and economic energy-efficient driving techniques. Furthermore, several other measures to reduce the carbon footprint of CTL harvesting operations were discussed in this review. Finally, we recommend that all essential variables that have a significant impact on the productivity of harvesting work, fuel consumption and CO<sub>2</sub> emissions are reported in study papers in the future.</p>","PeriodicalId":48653,"journal":{"name":"Current Forestry Reports","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuel Consumption and CO2 Emissions in Fully Mechanized Cut-to-Length (CTL) Harvesting Operations of Industrial Roundwood: A Review\",\"authors\":\"Kalle Kärhä, Lars Eliasson, Martin Kühmaier, Raffaele Spinelli\",\"doi\":\"10.1007/s40725-024-00219-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose of Review</h3><p>The aim of this literature review was to bring together the most relevant and recent research information on the fuel consumption and CO<sub>2</sub> emissions caused by the fully mechanized cut-to-length (CTL) harvesting machinery when applied to industrial roundwood. A specific aim of this review was to describe the effect of different independent variables on fuel consumption in fully mechanized CTL wood-harvesting operations.</p><h3 data-test=\\\"abstract-sub-heading\\\">Recent Findings</h3><p>The review showed that the engine power of CTL forest machines accounts for most of the variance in the hourly fuel consumption of both harvesters and forwarders. We underline that the cubic-metre-based fuel consumption of CTL forest machines is correlated to the same factors that affect work productivity. Among all influencing factors, the average stem size, removal intensity and silvicultural treatment have the strongest effect on the fuel consumption per m<sup>3</sup> incurred with felling-processing, whereas forwarding distance, removal intensity and payload size are the main drivers of fuel consumption per m<sup>3</sup> as incurred with extraction. Further influencing factors are soil type (mineral soil or peatland), use of tracks, assortment type and machine size. Together with those factors, the role of the machine operator remains crucial and is dependent on two separate skills: the capacity to achieve high productivity, and that to apply fuel-saving driving techniques.</p><h3 data-test=\\\"abstract-sub-heading\\\">Summary</h3><p>The easiest way to reduce the carbon footprint of CTL harvesting machines is to increase the productivity of the harvesting work, for example by giving machine operator-specific training to utilize more efficient work methods and economic energy-efficient driving techniques. Furthermore, several other measures to reduce the carbon footprint of CTL harvesting operations were discussed in this review. Finally, we recommend that all essential variables that have a significant impact on the productivity of harvesting work, fuel consumption and CO<sub>2</sub> emissions are reported in study papers in the future.</p>\",\"PeriodicalId\":48653,\"journal\":{\"name\":\"Current Forestry Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Forestry Reports\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s40725-024-00219-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Forestry Reports","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s40725-024-00219-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Fuel Consumption and CO2 Emissions in Fully Mechanized Cut-to-Length (CTL) Harvesting Operations of Industrial Roundwood: A Review
Purpose of Review
The aim of this literature review was to bring together the most relevant and recent research information on the fuel consumption and CO2 emissions caused by the fully mechanized cut-to-length (CTL) harvesting machinery when applied to industrial roundwood. A specific aim of this review was to describe the effect of different independent variables on fuel consumption in fully mechanized CTL wood-harvesting operations.
Recent Findings
The review showed that the engine power of CTL forest machines accounts for most of the variance in the hourly fuel consumption of both harvesters and forwarders. We underline that the cubic-metre-based fuel consumption of CTL forest machines is correlated to the same factors that affect work productivity. Among all influencing factors, the average stem size, removal intensity and silvicultural treatment have the strongest effect on the fuel consumption per m3 incurred with felling-processing, whereas forwarding distance, removal intensity and payload size are the main drivers of fuel consumption per m3 as incurred with extraction. Further influencing factors are soil type (mineral soil or peatland), use of tracks, assortment type and machine size. Together with those factors, the role of the machine operator remains crucial and is dependent on two separate skills: the capacity to achieve high productivity, and that to apply fuel-saving driving techniques.
Summary
The easiest way to reduce the carbon footprint of CTL harvesting machines is to increase the productivity of the harvesting work, for example by giving machine operator-specific training to utilize more efficient work methods and economic energy-efficient driving techniques. Furthermore, several other measures to reduce the carbon footprint of CTL harvesting operations were discussed in this review. Finally, we recommend that all essential variables that have a significant impact on the productivity of harvesting work, fuel consumption and CO2 emissions are reported in study papers in the future.
Current Forestry ReportsAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
15.90
自引率
2.10%
发文量
22
期刊介绍:
Current Forestry Reports features in-depth review articles written by global experts on significant advancements in forestry. Its goal is to provide clear, insightful, and balanced contributions that highlight and summarize important topics for forestry researchers and managers.
To achieve this, the journal appoints international authorities as Section Editors in various key subject areas like physiological processes, tree genetics, forest management, remote sensing, and wood structure and function. These Section Editors select topics for which leading experts contribute comprehensive review articles that focus on new developments and recently published papers of great importance. Moreover, an international Editorial Board evaluates the yearly table of contents, suggests articles of special interest to their specific country or region, and ensures that the topics are up-to-date and include emerging research.