边界效应会导致种群基因组数据中出现范围扩大的错误信号。

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular biology and evolution Pub Date : 2024-05-03 DOI:10.1093/molbev/msae091
Petri Kemppainen, Rhiannon Schembri, Paolo Momigliano
{"title":"边界效应会导致种群基因组数据中出现范围扩大的错误信号。","authors":"Petri Kemppainen, Rhiannon Schembri, Paolo Momigliano","doi":"10.1093/molbev/msae091","DOIUrl":null,"url":null,"abstract":"<p><p>Studying range expansions is central for understanding genetic variation through space and time as well as for identifying refugia and biological invasions. Range expansions are characterized by serial founder events causing clines of decreasing genetic diversity away from the center of origin and asymmetries in the two-dimensional allele frequency spectra. These asymmetries, summarized by the directionality index (ψ), are sensitive to range expansions and persist for longer than clines in genetic diversity. In continuous and finite meta-populations, genetic drift tends to be stronger at the edges of the species distribution in equilibrium populations and populations undergoing range expansions alike. Such boundary effects are expected to affect geographic patterns in genetic diversity and ψ. Here we demonstrate that boundary effects cause high false positive rates in equilibrium meta-populations when testing for range expansions. In the simulations, the absolute value of ψ (|ψ|) in equilibrium data sets was proportional to the fixation index (FST). By fitting signatures of range expansions as a function of ɛ |ψ|/FST and geographic clines in ψ, strong evidence for range expansions could be detected in data from a recent rapid invasion of the cane toad, Rhinella marina, in Australia, but not in 28 previously published empirical data sets from Australian scincid lizards that were significant for the standard range expansion tests. Thus, while clinal variation in ψ is still the most sensitive statistic to range expansions, to detect true signatures of range expansions in natural populations, its magnitude needs to be considered in relation to the overall levels of genetic structuring in the data.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":null,"pages":null},"PeriodicalIF":11.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135943/pdf/","citationCount":"0","resultStr":"{\"title\":\"Boundary Effects Cause False Signals of Range Expansions in Population Genomic Data.\",\"authors\":\"Petri Kemppainen, Rhiannon Schembri, Paolo Momigliano\",\"doi\":\"10.1093/molbev/msae091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Studying range expansions is central for understanding genetic variation through space and time as well as for identifying refugia and biological invasions. Range expansions are characterized by serial founder events causing clines of decreasing genetic diversity away from the center of origin and asymmetries in the two-dimensional allele frequency spectra. These asymmetries, summarized by the directionality index (ψ), are sensitive to range expansions and persist for longer than clines in genetic diversity. In continuous and finite meta-populations, genetic drift tends to be stronger at the edges of the species distribution in equilibrium populations and populations undergoing range expansions alike. Such boundary effects are expected to affect geographic patterns in genetic diversity and ψ. Here we demonstrate that boundary effects cause high false positive rates in equilibrium meta-populations when testing for range expansions. In the simulations, the absolute value of ψ (|ψ|) in equilibrium data sets was proportional to the fixation index (FST). By fitting signatures of range expansions as a function of ɛ |ψ|/FST and geographic clines in ψ, strong evidence for range expansions could be detected in data from a recent rapid invasion of the cane toad, Rhinella marina, in Australia, but not in 28 previously published empirical data sets from Australian scincid lizards that were significant for the standard range expansion tests. Thus, while clinal variation in ψ is still the most sensitive statistic to range expansions, to detect true signatures of range expansions in natural populations, its magnitude needs to be considered in relation to the overall levels of genetic structuring in the data.</p>\",\"PeriodicalId\":18730,\"journal\":{\"name\":\"Molecular biology and evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135943/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biology and evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/molbev/msae091\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae091","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

研究物种分布区扩展(REs)对于了解不同时空的遗传变异以及识别避难所和生物入侵至关重要。分布区扩展的特点是连续的创始事件导致多样性从起源中心向外递减,并导致二维等位基因频率谱的不对称。这些不对称现象用方向性指数(ψ)来概括,对RE很敏感,而且比遗传多样性的克隆持续时间更长。在连续和有限的元种群中,无论是平衡种群还是经历 REs 的种群,遗传漂变往往在物种分布的边缘更为强烈。这种边界效应(BEs)预计会影响遗传多样性和ψ的地理模式。在这里,我们证明了在测试 REs 时,边界效应会导致平衡元种群的高假阳性率。在模拟中,平衡数据集中ψ(|ψ|)的绝对值与固定指数(FST)成正比。通过拟合REs的特征作为ɛ=|ψ|/FST和ψ的地理支系的函数,在澳大利亚最近快速入侵的蔗蟾蜍(Rhinella marina)的数据中可以检测到REs的有力证据,但在之前发表的28个澳大利亚鳞蜥的经验数据集中却检测不到REs,而这些数据对于标准的RE检验是显著的。因此,虽然ψ的支系变异仍然是对RE最敏感的统计量,但要在自然种群中检测到真正的RE特征,其大小需要与数据中遗传结构的总体水平联系起来考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boundary Effects Cause False Signals of Range Expansions in Population Genomic Data.

Studying range expansions is central for understanding genetic variation through space and time as well as for identifying refugia and biological invasions. Range expansions are characterized by serial founder events causing clines of decreasing genetic diversity away from the center of origin and asymmetries in the two-dimensional allele frequency spectra. These asymmetries, summarized by the directionality index (ψ), are sensitive to range expansions and persist for longer than clines in genetic diversity. In continuous and finite meta-populations, genetic drift tends to be stronger at the edges of the species distribution in equilibrium populations and populations undergoing range expansions alike. Such boundary effects are expected to affect geographic patterns in genetic diversity and ψ. Here we demonstrate that boundary effects cause high false positive rates in equilibrium meta-populations when testing for range expansions. In the simulations, the absolute value of ψ (|ψ|) in equilibrium data sets was proportional to the fixation index (FST). By fitting signatures of range expansions as a function of ɛ |ψ|/FST and geographic clines in ψ, strong evidence for range expansions could be detected in data from a recent rapid invasion of the cane toad, Rhinella marina, in Australia, but not in 28 previously published empirical data sets from Australian scincid lizards that were significant for the standard range expansion tests. Thus, while clinal variation in ψ is still the most sensitive statistic to range expansions, to detect true signatures of range expansions in natural populations, its magnitude needs to be considered in relation to the overall levels of genetic structuring in the data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
期刊最新文献
Evolution of the correlated genomic variation landscape across a divergence continuum in the genus Castanopsis. The human accelerated region HAR202 controls NPAS3 expression in the developing forebrain displaying differential enhancer activity between modern and archaic human sequences. Most pleiotropic effects of gene knockouts are evolutionarily transient in yeasts. Rapid loss of nutritional symbionts in an endemic Hawaiian herbivore radiation is associated with plant galling habit. A novel expression domain of extradenticle underlies the evolutionary developmental origin of the chelicerate patella.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1