Neke Ibeh, Charles Y Feigin, Stephen R Frankenberg, Davis J McCarthy, Andrew J Pask, Irene Gallego Romero
{"title":"肥尾盾尾鱼(Sminthopsis crassicaudata)的全新转录组组装和基因组注释。","authors":"Neke Ibeh, Charles Y Feigin, Stephen R Frankenberg, Davis J McCarthy, Andrew J Pask, Irene Gallego Romero","doi":"10.46471/gigabyte.118","DOIUrl":null,"url":null,"abstract":"<p><p>Marsupials exhibit distinctive modes of reproduction and early development that set them apart from their eutherian counterparts and render them invaluable for comparative studies. However, marsupial genomic resources still lag far behind those of eutherian mammals. We present a series of novel genomic resources for the fat-tailed dunnart (<i>Sminthopsis crassicaudata</i>), a mouse-like marsupial that, due to its ease of husbandry and <i>ex-utero</i> development, is emerging as a laboratory model. We constructed a highly representative multi-tissue <i>de novo</i> transcriptome assembly of dunnart RNA-seq reads spanning 12 tissues. The transcriptome includes 2,093,982 assembled transcripts and has a mammalian transcriptome BUSCO completeness score of 93.3%, the highest amongst currently published marsupial transcriptomes. This global transcriptome, along with <i>ab initio</i> predictions, supported annotation of the existing dunnart genome, revealing 21,622 protein-coding genes. Altogether, these resources will enable wider use of the dunnart as a model marsupial and deepen our understanding of mammalian genome evolution.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte118"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091235/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>De novo</i> transcriptome assembly and genome annotation of the fat-tailed dunnart (<i>Sminthopsis crassicaudata</i>).\",\"authors\":\"Neke Ibeh, Charles Y Feigin, Stephen R Frankenberg, Davis J McCarthy, Andrew J Pask, Irene Gallego Romero\",\"doi\":\"10.46471/gigabyte.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Marsupials exhibit distinctive modes of reproduction and early development that set them apart from their eutherian counterparts and render them invaluable for comparative studies. However, marsupial genomic resources still lag far behind those of eutherian mammals. We present a series of novel genomic resources for the fat-tailed dunnart (<i>Sminthopsis crassicaudata</i>), a mouse-like marsupial that, due to its ease of husbandry and <i>ex-utero</i> development, is emerging as a laboratory model. We constructed a highly representative multi-tissue <i>de novo</i> transcriptome assembly of dunnart RNA-seq reads spanning 12 tissues. The transcriptome includes 2,093,982 assembled transcripts and has a mammalian transcriptome BUSCO completeness score of 93.3%, the highest amongst currently published marsupial transcriptomes. This global transcriptome, along with <i>ab initio</i> predictions, supported annotation of the existing dunnart genome, revealing 21,622 protein-coding genes. Altogether, these resources will enable wider use of the dunnart as a model marsupial and deepen our understanding of mammalian genome evolution.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2024 \",\"pages\":\"gigabyte118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091235/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
De novo transcriptome assembly and genome annotation of the fat-tailed dunnart (Sminthopsis crassicaudata).
Marsupials exhibit distinctive modes of reproduction and early development that set them apart from their eutherian counterparts and render them invaluable for comparative studies. However, marsupial genomic resources still lag far behind those of eutherian mammals. We present a series of novel genomic resources for the fat-tailed dunnart (Sminthopsis crassicaudata), a mouse-like marsupial that, due to its ease of husbandry and ex-utero development, is emerging as a laboratory model. We constructed a highly representative multi-tissue de novo transcriptome assembly of dunnart RNA-seq reads spanning 12 tissues. The transcriptome includes 2,093,982 assembled transcripts and has a mammalian transcriptome BUSCO completeness score of 93.3%, the highest amongst currently published marsupial transcriptomes. This global transcriptome, along with ab initio predictions, supported annotation of the existing dunnart genome, revealing 21,622 protein-coding genes. Altogether, these resources will enable wider use of the dunnart as a model marsupial and deepen our understanding of mammalian genome evolution.