图形结构感知对比多视图聚类

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Big Data Pub Date : 2023-11-20 DOI:10.1109/TBDATA.2023.3334674
Rui Chen;Yongqiang Tang;Xiangrui Cai;Xiaojie Yuan;Wenlong Feng;Wensheng Zhang
{"title":"图形结构感知对比多视图聚类","authors":"Rui Chen;Yongqiang Tang;Xiangrui Cai;Xiaojie Yuan;Wenlong Feng;Wensheng Zhang","doi":"10.1109/TBDATA.2023.3334674","DOIUrl":null,"url":null,"abstract":"Multi-view clustering has become a research hotspot in recent decades because of its effectiveness in heterogeneous data fusion. Although a large number of related studies have been developed one after another, most of them usually only concern with the characteristics of the data themselves and overlook the inherent connection among samples, hindering them from exploring structural knowledge of graph space. Moreover, many current works tend to highlight the compactness of one cluster without taking the differences between clusters into account. To track these two drawbacks, in this article, we propose a graph structure aware contrastive multi-view clustering (namely, GCMC) approach. Specifically, we incorporate the well-designed graph autoencoder with conventional multi-layer perception autoencoder to extract the structural and high-level representation of multi-view data, so that the underlying correlation of samples can be effectively squeezed for model learning. Then the contrastive learning paradigm is performed on multiple pseudo-label distributions to ensure that the positive pairs of pseudo-label representations share the complementarity across views while the divergence between negative pairs is sufficiently large. This makes each semantic cluster more discriminative, i.e., jointly satisfying intra-cluster compactness and inter-cluster exclusiveness. Through comprehensive experiments on eight widely-known datasets, we prove that the proposed approach can perform better than the state-of-the-art opponents.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"10 3","pages":"260-274"},"PeriodicalIF":7.5000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Structure Aware Contrastive Multi-View Clustering\",\"authors\":\"Rui Chen;Yongqiang Tang;Xiangrui Cai;Xiaojie Yuan;Wenlong Feng;Wensheng Zhang\",\"doi\":\"10.1109/TBDATA.2023.3334674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-view clustering has become a research hotspot in recent decades because of its effectiveness in heterogeneous data fusion. Although a large number of related studies have been developed one after another, most of them usually only concern with the characteristics of the data themselves and overlook the inherent connection among samples, hindering them from exploring structural knowledge of graph space. Moreover, many current works tend to highlight the compactness of one cluster without taking the differences between clusters into account. To track these two drawbacks, in this article, we propose a graph structure aware contrastive multi-view clustering (namely, GCMC) approach. Specifically, we incorporate the well-designed graph autoencoder with conventional multi-layer perception autoencoder to extract the structural and high-level representation of multi-view data, so that the underlying correlation of samples can be effectively squeezed for model learning. Then the contrastive learning paradigm is performed on multiple pseudo-label distributions to ensure that the positive pairs of pseudo-label representations share the complementarity across views while the divergence between negative pairs is sufficiently large. This makes each semantic cluster more discriminative, i.e., jointly satisfying intra-cluster compactness and inter-cluster exclusiveness. Through comprehensive experiments on eight widely-known datasets, we prove that the proposed approach can perform better than the state-of-the-art opponents.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"10 3\",\"pages\":\"260-274\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10323145/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10323145/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多视图聚类因其在异构数据融合中的有效性而成为近几十年来的研究热点。虽然大量相关研究相继问世,但大多数研究通常只关注数据本身的特征,忽略了样本之间的内在联系,阻碍了对图空间结构知识的探索。此外,目前的许多研究都倾向于突出一个聚类的紧凑性,而不考虑聚类之间的差异。为了克服这两个缺点,我们在本文中提出了一种图结构感知对比多视角聚类(即 GCMC)方法。具体来说,我们将精心设计的图自动编码器与传统的多层感知自动编码器相结合,提取多视角数据的结构和高层表示,从而有效地挤压样本的底层相关性,用于模型学习。然后对多个伪标签分布进行对比学习范式,以确保正对伪标签表征在不同视图之间具有互补性,而负对间的分歧足够大。这就使得每个语义簇更具区分度,即共同满足簇内紧凑性和簇间排他性。通过在八个广为人知的数据集上进行综合实验,我们证明了所提出的方法比最先进的对手表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph Structure Aware Contrastive Multi-View Clustering
Multi-view clustering has become a research hotspot in recent decades because of its effectiveness in heterogeneous data fusion. Although a large number of related studies have been developed one after another, most of them usually only concern with the characteristics of the data themselves and overlook the inherent connection among samples, hindering them from exploring structural knowledge of graph space. Moreover, many current works tend to highlight the compactness of one cluster without taking the differences between clusters into account. To track these two drawbacks, in this article, we propose a graph structure aware contrastive multi-view clustering (namely, GCMC) approach. Specifically, we incorporate the well-designed graph autoencoder with conventional multi-layer perception autoencoder to extract the structural and high-level representation of multi-view data, so that the underlying correlation of samples can be effectively squeezed for model learning. Then the contrastive learning paradigm is performed on multiple pseudo-label distributions to ensure that the positive pairs of pseudo-label representations share the complementarity across views while the divergence between negative pairs is sufficiently large. This makes each semantic cluster more discriminative, i.e., jointly satisfying intra-cluster compactness and inter-cluster exclusiveness. Through comprehensive experiments on eight widely-known datasets, we prove that the proposed approach can perform better than the state-of-the-art opponents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
期刊最新文献
Guest Editorial TBD Special Issue on Graph Machine Learning for Recommender Systems Reliable Data Augmented Contrastive Learning for Sequential Recommendation Denoised Graph Collaborative Filtering via Neighborhood Similarity and Dynamic Thresholding Higher-Order Smoothness Enhanced Graph Collaborative Filtering AKGNN: Attribute Knowledge Graph Neural Networks Recommendation for Corporate Volunteer Activities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1