{"title":"通过分级挖掘损坏区的双孔隙流的广义解法","authors":"Kristopher L. Kuhlman","doi":"10.1007/s11004-024-10143-8","DOIUrl":null,"url":null,"abstract":"<p>Prediction of flow to boreholes or excavations in fractured low-permeability rocks is important for resource extraction and disposal or sequestration activities. Analytical solutions for fluid pressure and flowrate, when available, are powerful, insightful, and efficient tools enabling parameter estimation and uncertainty quantification. A flexible porous media flow solution for arbitrary physical dimensions is derived and extended to double porosity for converging radial flow when permeability and porosity decrease radially as a power law away from a borehole or opening. This distribution can arise from damage accumulation due to stress relief associated with drilling or mining. The single-porosity graded conductivity solution was initially found for heat conduction, the arbitrary dimension flow solution comes from hydrology, and the solution with both arbitrary dimension and graded permeability distribution appeared in reservoir engineering. These existing solutions are combined and extended here to two implementations of the double-porosity conceptual model, for both a simpler thin-film mass transfer and more physically realistic diffusion between fracture and matrix. This work presents a new specified-flowrate solution with wellbore storage for the simpler double-porosity model, and a new, more physically realistic solution for any wellbore boundary condition. A new closed-form expression is derived for the matrix diffusion solution (applicable to both homogeneous and graded problems), improving on previous infinite series expressions.</p>","PeriodicalId":51117,"journal":{"name":"Mathematical Geosciences","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Solution for Double-Porosity Flow Through a Graded Excavation Damaged Zone\",\"authors\":\"Kristopher L. Kuhlman\",\"doi\":\"10.1007/s11004-024-10143-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prediction of flow to boreholes or excavations in fractured low-permeability rocks is important for resource extraction and disposal or sequestration activities. Analytical solutions for fluid pressure and flowrate, when available, are powerful, insightful, and efficient tools enabling parameter estimation and uncertainty quantification. A flexible porous media flow solution for arbitrary physical dimensions is derived and extended to double porosity for converging radial flow when permeability and porosity decrease radially as a power law away from a borehole or opening. This distribution can arise from damage accumulation due to stress relief associated with drilling or mining. The single-porosity graded conductivity solution was initially found for heat conduction, the arbitrary dimension flow solution comes from hydrology, and the solution with both arbitrary dimension and graded permeability distribution appeared in reservoir engineering. These existing solutions are combined and extended here to two implementations of the double-porosity conceptual model, for both a simpler thin-film mass transfer and more physically realistic diffusion between fracture and matrix. This work presents a new specified-flowrate solution with wellbore storage for the simpler double-porosity model, and a new, more physically realistic solution for any wellbore boundary condition. A new closed-form expression is derived for the matrix diffusion solution (applicable to both homogeneous and graded problems), improving on previous infinite series expressions.</p>\",\"PeriodicalId\":51117,\"journal\":{\"name\":\"Mathematical Geosciences\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11004-024-10143-8\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11004-024-10143-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Generalized Solution for Double-Porosity Flow Through a Graded Excavation Damaged Zone
Prediction of flow to boreholes or excavations in fractured low-permeability rocks is important for resource extraction and disposal or sequestration activities. Analytical solutions for fluid pressure and flowrate, when available, are powerful, insightful, and efficient tools enabling parameter estimation and uncertainty quantification. A flexible porous media flow solution for arbitrary physical dimensions is derived and extended to double porosity for converging radial flow when permeability and porosity decrease radially as a power law away from a borehole or opening. This distribution can arise from damage accumulation due to stress relief associated with drilling or mining. The single-porosity graded conductivity solution was initially found for heat conduction, the arbitrary dimension flow solution comes from hydrology, and the solution with both arbitrary dimension and graded permeability distribution appeared in reservoir engineering. These existing solutions are combined and extended here to two implementations of the double-porosity conceptual model, for both a simpler thin-film mass transfer and more physically realistic diffusion between fracture and matrix. This work presents a new specified-flowrate solution with wellbore storage for the simpler double-porosity model, and a new, more physically realistic solution for any wellbore boundary condition. A new closed-form expression is derived for the matrix diffusion solution (applicable to both homogeneous and graded problems), improving on previous infinite series expressions.
期刊介绍:
Mathematical Geosciences (formerly Mathematical Geology) publishes original, high-quality, interdisciplinary papers in geomathematics focusing on quantitative methods and studies of the Earth, its natural resources and the environment. This international publication is the official journal of the IAMG. Mathematical Geosciences is an essential reference for researchers and practitioners of geomathematics who develop and apply quantitative models to earth science and geo-engineering problems.