提高工业微深拉伸生产稳健性的方法和效果综述

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2024-05-09 DOI:10.1007/s12289-024-01832-0
Úlfar Arinbjarnar, Philipp Schumann, Jonas Moske, Alexander Breunig, Peter Groche, Chris V. Nielsen
{"title":"提高工业微深拉伸生产稳健性的方法和效果综述","authors":"Úlfar Arinbjarnar,&nbsp;Philipp Schumann,&nbsp;Jonas Moske,&nbsp;Alexander Breunig,&nbsp;Peter Groche,&nbsp;Chris V. Nielsen","doi":"10.1007/s12289-024-01832-0","DOIUrl":null,"url":null,"abstract":"<div><p>Deep-drawing is a method in which flat sheets of metal are formed into complex 3-dimensional geometries. Three main types of challenges arise when transitioning from the macro-scale to micro-deep drawing. These can be summarised as: (1) tribological effects, which mainly stem from the relative difference in surface characteristics between the two size scales, (2) material behaviour effects which arise from the increasing heterogeneity of materials that have a decreasing number of grains that are deformed in forming, and (3) dimensional effects which relate to difficulties in handling and inspection of small components at high rates and challenges in manufacturing and monitoring of tool components for use in micro-deep drawing. Various methods or effects can be applied to micro-deep drawing processes to tackle these challenges. This paper reviews research on methods and effects that can be used to improve the robustness in micro-deep drawing processes. Small changes, such as the choice of lubricant and slight changes to the punch geometry are considered, but so are larger changes such as the use of ultrasonic vibration to improve formability and adjustable tooling. The influence of process monitoring and simulation on process robustness is also considered. A summary of methods and effects is drawn at the end to highlight potential space for innovation.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of methods and effects for improving production robustness in industrial micro-deep drawing\",\"authors\":\"Úlfar Arinbjarnar,&nbsp;Philipp Schumann,&nbsp;Jonas Moske,&nbsp;Alexander Breunig,&nbsp;Peter Groche,&nbsp;Chris V. Nielsen\",\"doi\":\"10.1007/s12289-024-01832-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep-drawing is a method in which flat sheets of metal are formed into complex 3-dimensional geometries. Three main types of challenges arise when transitioning from the macro-scale to micro-deep drawing. These can be summarised as: (1) tribological effects, which mainly stem from the relative difference in surface characteristics between the two size scales, (2) material behaviour effects which arise from the increasing heterogeneity of materials that have a decreasing number of grains that are deformed in forming, and (3) dimensional effects which relate to difficulties in handling and inspection of small components at high rates and challenges in manufacturing and monitoring of tool components for use in micro-deep drawing. Various methods or effects can be applied to micro-deep drawing processes to tackle these challenges. This paper reviews research on methods and effects that can be used to improve the robustness in micro-deep drawing processes. Small changes, such as the choice of lubricant and slight changes to the punch geometry are considered, but so are larger changes such as the use of ultrasonic vibration to improve formability and adjustable tooling. The influence of process monitoring and simulation on process robustness is also considered. A summary of methods and effects is drawn at the end to highlight potential space for innovation.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"17 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-024-01832-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01832-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

深拉是一种将平面金属板成型为复杂三维几何形状的方法。从宏观尺度过渡到微观深拉时,会遇到三大类挑战。这些挑战可归纳为(1) 摩擦学效应,主要源于两种尺寸尺度之间表面特征的相对差异;(2) 材料行为效应,源于材料的异质性不断增加,在成形过程中变形的晶粒数量不断减少;以及 (3) 尺寸效应,涉及到高速处理和检查小型部件的困难,以及制造和监控用于微深拉伸的工具部件的挑战。为应对这些挑战,可将各种方法或效应应用于微深拉工艺。本文回顾了可用于提高微深拉伸工艺稳健性的方法和效果的研究。本文考虑了一些小的变化,如润滑剂的选择和冲头几何形状的细微变化,也考虑了一些大的变化,如使用超声波振动来提高成形性和可调工具。此外,还考虑了工艺监控和模拟对工艺稳健性的影响。最后对各种方法和效果进行了总结,以突出创新的潜在空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A review of methods and effects for improving production robustness in industrial micro-deep drawing

Deep-drawing is a method in which flat sheets of metal are formed into complex 3-dimensional geometries. Three main types of challenges arise when transitioning from the macro-scale to micro-deep drawing. These can be summarised as: (1) tribological effects, which mainly stem from the relative difference in surface characteristics between the two size scales, (2) material behaviour effects which arise from the increasing heterogeneity of materials that have a decreasing number of grains that are deformed in forming, and (3) dimensional effects which relate to difficulties in handling and inspection of small components at high rates and challenges in manufacturing and monitoring of tool components for use in micro-deep drawing. Various methods or effects can be applied to micro-deep drawing processes to tackle these challenges. This paper reviews research on methods and effects that can be used to improve the robustness in micro-deep drawing processes. Small changes, such as the choice of lubricant and slight changes to the punch geometry are considered, but so are larger changes such as the use of ultrasonic vibration to improve formability and adjustable tooling. The influence of process monitoring and simulation on process robustness is also considered. A summary of methods and effects is drawn at the end to highlight potential space for innovation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1