{"title":"调整电荷传输对基于 SY-PPV 的聚合物发光二极管光电性能的影响","authors":"Junfei Liang","doi":"10.1007/s13233-024-00268-4","DOIUrl":null,"url":null,"abstract":"<div><p>Unconjugated polymer poly(vinylcarbazole) (PVK) was incorporated into poly[{2,5-di(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene}-co-{3-(4′-(3″,7″-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene}-co-{3-(3′-(3′,7′-dimethyloctyloxy) phenyl)-1,4-phenylenevinylene}](SY-PPV) as the emissive layer of PLEDs. The unconjugated backbone of PVK effectively restrains the hole transport property of SY-PPV, which is advantaged to realize better charge-transport balance. Subsequently, the blue-lighting polymer poly[(9,9-dioctyl-2,7-fluorene)-co-(dibenzothiophene -S,S-dioxide)](SO10), which has a deep highest occupied molecular orbital, was employed as the hole-blocking layer to further balance the charge transportation of the emissive device. The SO10 can effectively restrict the hole carrier entering into cathode interface, which is instrumental in avoiding exction quenching on the cathode interface. Through optimizing device structure, a maximum luminous efficiency of 13.52 cd A<sup>−1</sup> was realized, which is achieved 120% improvement of that of the pristine SY-PPV as emissive layer. These results indicate that incorporating unconjugated polymer and hole-blocking layer is an efficient method to adjust charge-transport balance of hole-type emissive materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 9","pages":"853 - 860"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of adjusting charge transport on optoelectronic performances of polymer light-emitting diodes based on SY-PPV\",\"authors\":\"Junfei Liang\",\"doi\":\"10.1007/s13233-024-00268-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unconjugated polymer poly(vinylcarbazole) (PVK) was incorporated into poly[{2,5-di(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene}-co-{3-(4′-(3″,7″-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene}-co-{3-(3′-(3′,7′-dimethyloctyloxy) phenyl)-1,4-phenylenevinylene}](SY-PPV) as the emissive layer of PLEDs. The unconjugated backbone of PVK effectively restrains the hole transport property of SY-PPV, which is advantaged to realize better charge-transport balance. Subsequently, the blue-lighting polymer poly[(9,9-dioctyl-2,7-fluorene)-co-(dibenzothiophene -S,S-dioxide)](SO10), which has a deep highest occupied molecular orbital, was employed as the hole-blocking layer to further balance the charge transportation of the emissive device. The SO10 can effectively restrict the hole carrier entering into cathode interface, which is instrumental in avoiding exction quenching on the cathode interface. Through optimizing device structure, a maximum luminous efficiency of 13.52 cd A<sup>−1</sup> was realized, which is achieved 120% improvement of that of the pristine SY-PPV as emissive layer. These results indicate that incorporating unconjugated polymer and hole-blocking layer is an efficient method to adjust charge-transport balance of hole-type emissive materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"32 9\",\"pages\":\"853 - 860\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13233-024-00268-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00268-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Effect of adjusting charge transport on optoelectronic performances of polymer light-emitting diodes based on SY-PPV
Unconjugated polymer poly(vinylcarbazole) (PVK) was incorporated into poly[{2,5-di(3′,7′-dimethyloctyloxy)-1,4-phenylene-vinylene}-co-{3-(4′-(3″,7″-dimethyloctyloxy)phenyl)-1,4-phenylenevinylene}-co-{3-(3′-(3′,7′-dimethyloctyloxy) phenyl)-1,4-phenylenevinylene}](SY-PPV) as the emissive layer of PLEDs. The unconjugated backbone of PVK effectively restrains the hole transport property of SY-PPV, which is advantaged to realize better charge-transport balance. Subsequently, the blue-lighting polymer poly[(9,9-dioctyl-2,7-fluorene)-co-(dibenzothiophene -S,S-dioxide)](SO10), which has a deep highest occupied molecular orbital, was employed as the hole-blocking layer to further balance the charge transportation of the emissive device. The SO10 can effectively restrict the hole carrier entering into cathode interface, which is instrumental in avoiding exction quenching on the cathode interface. Through optimizing device structure, a maximum luminous efficiency of 13.52 cd A−1 was realized, which is achieved 120% improvement of that of the pristine SY-PPV as emissive layer. These results indicate that incorporating unconjugated polymer and hole-blocking layer is an efficient method to adjust charge-transport balance of hole-type emissive materials.
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.