用于快速充电锂离子电池负极的金属有机介晶衍生多向石墨纳米球超级粒子

IF 5.5 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Carbon Letters Pub Date : 2024-05-10 DOI:10.1007/s42823-024-00740-2
Jae Seo Park, Yeon Jeong Jeong, Dong Yoon Park, Hyunji Shin, Da Hee Jang, So Eun Kim, Jeong Heon Ryu, Seo Mi Yang, Jang-Yul Kim, Jae Ho Kim, Seung Jae Yang
{"title":"用于快速充电锂离子电池负极的金属有机介晶衍生多向石墨纳米球超级粒子","authors":"Jae Seo Park,&nbsp;Yeon Jeong Jeong,&nbsp;Dong Yoon Park,&nbsp;Hyunji Shin,&nbsp;Da Hee Jang,&nbsp;So Eun Kim,&nbsp;Jeong Heon Ryu,&nbsp;Seo Mi Yang,&nbsp;Jang-Yul Kim,&nbsp;Jae Ho Kim,&nbsp;Seung Jae Yang","doi":"10.1007/s42823-024-00740-2","DOIUrl":null,"url":null,"abstract":"<div><p>Mesocrystals are macroscopic structures formed by the assembly of nanoparticles that possess distinct surface structures and collective properties when compared to traditional crystalline materials. Various growth mechanisms and their unique features have promise as material design tools for diverse potential applications. This paper presents a straightforward method for metal–organic coordination-based mesocrystals using nickel ions and terephthalic acid. The coordinative compound between Ni<sup>2+</sup> and terephthalic acid drives the particle-mediated growth mechanism, resulting in the mesocrystal formation through a mesoscale assembly. Subsequent carbonization converts mesocrystals to multidirectional interconnected graphite nanospheres along the macroscopic framework while preserving the original structure of the Ni-terephthalic acid mesocrystal. Comprehensive investigations demonstrate that multi-oriented edge sites and high crystallinity with larger interlayer spacing facilitate lithium ion transport and continuous intercalation. The resulting graphitic superparticle electrodes show superior rate capability (128.6 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>) and stable cycle stability (0.052% of capacity decay per cycle), certifying it as an advanced anode material for lithium-ion batteries.</p></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"34 7","pages":"1971 - 1980"},"PeriodicalIF":5.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superparticle of multidirectional graphitic nanospheres derived from metal–organic mesocrystal for fast-chargeable lithium-ion battery anode\",\"authors\":\"Jae Seo Park,&nbsp;Yeon Jeong Jeong,&nbsp;Dong Yoon Park,&nbsp;Hyunji Shin,&nbsp;Da Hee Jang,&nbsp;So Eun Kim,&nbsp;Jeong Heon Ryu,&nbsp;Seo Mi Yang,&nbsp;Jang-Yul Kim,&nbsp;Jae Ho Kim,&nbsp;Seung Jae Yang\",\"doi\":\"10.1007/s42823-024-00740-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mesocrystals are macroscopic structures formed by the assembly of nanoparticles that possess distinct surface structures and collective properties when compared to traditional crystalline materials. Various growth mechanisms and their unique features have promise as material design tools for diverse potential applications. This paper presents a straightforward method for metal–organic coordination-based mesocrystals using nickel ions and terephthalic acid. The coordinative compound between Ni<sup>2+</sup> and terephthalic acid drives the particle-mediated growth mechanism, resulting in the mesocrystal formation through a mesoscale assembly. Subsequent carbonization converts mesocrystals to multidirectional interconnected graphite nanospheres along the macroscopic framework while preserving the original structure of the Ni-terephthalic acid mesocrystal. Comprehensive investigations demonstrate that multi-oriented edge sites and high crystallinity with larger interlayer spacing facilitate lithium ion transport and continuous intercalation. The resulting graphitic superparticle electrodes show superior rate capability (128.6 mAh g<sup>−1</sup> at 5 A g<sup>−1</sup>) and stable cycle stability (0.052% of capacity decay per cycle), certifying it as an advanced anode material for lithium-ion batteries.</p></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"34 7\",\"pages\":\"1971 - 1980\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-024-00740-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-024-00740-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

介晶是由纳米粒子组装形成的宏观结构,与传统晶体材料相比,它具有独特的表面结构和集合特性。各种生长机制及其独特特性有望成为材料设计工具,用于各种潜在应用。本文介绍了一种利用镍离子和对苯二甲酸直接制备金属有机配位介晶的方法。Ni2+ 和对苯二甲酸之间的配位化合物驱动了粒子介导的生长机制,通过中尺度组装形成介晶。随后的碳化将介晶沿宏观框架转化为多向互连的石墨纳米球,同时保留了镍对苯二甲酸介晶的原始结构。综合研究表明,多方向边缘位点和较高的结晶度以及较大的层间距有利于锂离子传输和连续插层。由此产生的石墨超微粒电极显示出卓越的速率能力(5 A g-1 时为 128.6 mAh g-1)和稳定的循环稳定性(每循环容量衰减 0.052%),证明它是一种先进的锂离子电池负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superparticle of multidirectional graphitic nanospheres derived from metal–organic mesocrystal for fast-chargeable lithium-ion battery anode

Mesocrystals are macroscopic structures formed by the assembly of nanoparticles that possess distinct surface structures and collective properties when compared to traditional crystalline materials. Various growth mechanisms and their unique features have promise as material design tools for diverse potential applications. This paper presents a straightforward method for metal–organic coordination-based mesocrystals using nickel ions and terephthalic acid. The coordinative compound between Ni2+ and terephthalic acid drives the particle-mediated growth mechanism, resulting in the mesocrystal formation through a mesoscale assembly. Subsequent carbonization converts mesocrystals to multidirectional interconnected graphite nanospheres along the macroscopic framework while preserving the original structure of the Ni-terephthalic acid mesocrystal. Comprehensive investigations demonstrate that multi-oriented edge sites and high crystallinity with larger interlayer spacing facilitate lithium ion transport and continuous intercalation. The resulting graphitic superparticle electrodes show superior rate capability (128.6 mAh g−1 at 5 A g−1) and stable cycle stability (0.052% of capacity decay per cycle), certifying it as an advanced anode material for lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Letters
Carbon Letters CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.30
自引率
20.00%
发文量
118
期刊介绍: Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.
期刊最新文献
Investigating structural disparities in carbon nanoribbons and nanobelts through spectroscopies Research progress of carbon nanotubes as anode materials for lithium-ion batteries: a mini review Carbon nanomaterials: a promising avenue in colorectal cancer treatment Chemical dissolution of oxide layer on carbon steel SA 106 GR.B-based oxalic acid Optimization of the TiO2 content and location in core–shell tubular carbon nanofibers to improve the photocatalytic activity under visible light irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1