{"title":"阈值网络 GARCH 模型","authors":"Yue Pan, Jiazhu Pan","doi":"10.1111/jtsa.12743","DOIUrl":null,"url":null,"abstract":"<p>Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its variations have been widely adopted in the study of financial volatilities, while the extension of GARCH-type models to high-dimensional data is always difficult because of over-parameterization and computational complexity. In this article, we propose a multi-variate GARCH-type model that can simplify the parameterization by utilizing the network structure that can be appropriately specified for certain types of high-dimensional data. The asymmetry in the dynamics of volatilities is also considered as our model adopts a threshold structure. To enable our model to handle data with extremely high dimension, we investigate the near-epoch dependence (NED) of our model, and the asymptotic properties of our quasi-maximum-likelihood-estimator (QMLE) are derived from the limit theorems for NED random fields. Simulations are conducted to test our theoretical results. At last we fit our model to log-returns of four groups of stocks and the results indicate that bad news is not necessarily more influential on volatility if the network effects are considered.</p>","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"45 6","pages":"910-930"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12743","citationCount":"0","resultStr":"{\"title\":\"Threshold Network GARCH Model\",\"authors\":\"Yue Pan, Jiazhu Pan\",\"doi\":\"10.1111/jtsa.12743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its variations have been widely adopted in the study of financial volatilities, while the extension of GARCH-type models to high-dimensional data is always difficult because of over-parameterization and computational complexity. In this article, we propose a multi-variate GARCH-type model that can simplify the parameterization by utilizing the network structure that can be appropriately specified for certain types of high-dimensional data. The asymmetry in the dynamics of volatilities is also considered as our model adopts a threshold structure. To enable our model to handle data with extremely high dimension, we investigate the near-epoch dependence (NED) of our model, and the asymptotic properties of our quasi-maximum-likelihood-estimator (QMLE) are derived from the limit theorems for NED random fields. Simulations are conducted to test our theoretical results. At last we fit our model to log-returns of four groups of stocks and the results indicate that bad news is not necessarily more influential on volatility if the network effects are considered.</p>\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"45 6\",\"pages\":\"910-930\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12743\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12743\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12743","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
广义自回归条件异方差(GARCH)模型及其变体已被广泛应用于金融波动率的研究中,而由于参数过多和计算复杂,GARCH 型模型向高维数据的扩展一直是个难题。在本文中,我们提出了一种多变量 GARCH 型模型,该模型可以利用网络结构简化参数化,而网络结构可以适当地指定某些类型的高维数据。由于我们的模型采用了阈值结构,因此还考虑了波动率动态的非对称性。为了使我们的模型能够处理维度极高的数据,我们研究了模型的近时序依赖性(NED),并根据 NED 随机场的极限定理推导出了我们的准最大似然估计器(QMLE)的渐近特性。我们还进行了模拟,以检验我们的理论结果。最后,我们对四组股票的对数收益率拟合了我们的模型,结果表明,如果考虑到网络效应,坏消息对波动性的影响并不一定更大。
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its variations have been widely adopted in the study of financial volatilities, while the extension of GARCH-type models to high-dimensional data is always difficult because of over-parameterization and computational complexity. In this article, we propose a multi-variate GARCH-type model that can simplify the parameterization by utilizing the network structure that can be appropriately specified for certain types of high-dimensional data. The asymmetry in the dynamics of volatilities is also considered as our model adopts a threshold structure. To enable our model to handle data with extremely high dimension, we investigate the near-epoch dependence (NED) of our model, and the asymptotic properties of our quasi-maximum-likelihood-estimator (QMLE) are derived from the limit theorems for NED random fields. Simulations are conducted to test our theoretical results. At last we fit our model to log-returns of four groups of stocks and the results indicate that bad news is not necessarily more influential on volatility if the network effects are considered.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.