使用不同类型的化学外加剂开发可持续的矿渣基土工聚合物混凝土

IF 3.6 3区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Concrete Structures and Materials Pub Date : 2024-05-09 DOI:10.1186/s40069-024-00672-1
Ismail Amer, Amr Abdelkhalik, Ola A. Mayhoub, Mohamed Kohail
{"title":"使用不同类型的化学外加剂开发可持续的矿渣基土工聚合物混凝土","authors":"Ismail Amer, Amr Abdelkhalik, Ola A. Mayhoub, Mohamed Kohail","doi":"10.1186/s40069-024-00672-1","DOIUrl":null,"url":null,"abstract":"<p>Geopolymer concrete (GPC) has achieved a wide popularity since innovating it as an alternative to conventional concrete because of its superior mechanical characteristics and durability, in addition to being a green concrete due to its low negative impact on the environment. However, GPC still suffers from the problem of its poor workability which suppresses its spread in construction applications. This study investigated the most effective parameters on the workability of GPC including GGBFS content, water to binder ratio, and dosage of different types of chemical admixtures, Naphthalene-Based Admixture (NPA) and Polycarboxylate-Based Admixture (PCA), using Taguchi approach and Analysis of Variance (ANOVA) analysis considering the compressive strength at the different concrete ages. It was observed that NPA, in the geopolymer concrete, improved the compressive strength compared to PCA. The NPA-based mixes achieved the highest 28-day compressive strength, 69 MPa, with about 27.8% more than the highest 28-day compressive strength achieved by the PCA-based mixes, 54 MPa. The obtained results revealed that the NPA has achieved the best improvement for both the workability, in terms of initial slump value and slump loss rate, and the compressive strength of GPC mixes compared to PCA.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"23 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Sustainable Slag-based Geopolymer Concrete Using Different Types of Chemical Admixtures\",\"authors\":\"Ismail Amer, Amr Abdelkhalik, Ola A. Mayhoub, Mohamed Kohail\",\"doi\":\"10.1186/s40069-024-00672-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Geopolymer concrete (GPC) has achieved a wide popularity since innovating it as an alternative to conventional concrete because of its superior mechanical characteristics and durability, in addition to being a green concrete due to its low negative impact on the environment. However, GPC still suffers from the problem of its poor workability which suppresses its spread in construction applications. This study investigated the most effective parameters on the workability of GPC including GGBFS content, water to binder ratio, and dosage of different types of chemical admixtures, Naphthalene-Based Admixture (NPA) and Polycarboxylate-Based Admixture (PCA), using Taguchi approach and Analysis of Variance (ANOVA) analysis considering the compressive strength at the different concrete ages. It was observed that NPA, in the geopolymer concrete, improved the compressive strength compared to PCA. The NPA-based mixes achieved the highest 28-day compressive strength, 69 MPa, with about 27.8% more than the highest 28-day compressive strength achieved by the PCA-based mixes, 54 MPa. The obtained results revealed that the NPA has achieved the best improvement for both the workability, in terms of initial slump value and slump loss rate, and the compressive strength of GPC mixes compared to PCA.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-024-00672-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-024-00672-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

土工聚合物混凝土(GPC)因其优越的机械特性和耐久性而成为传统混凝土的替代品,并因其对环境的负面影响较小而成为绿色混凝土,自创新以来广受欢迎。然而,GPC 仍然存在工作性差的问题,这阻碍了它在建筑领域的推广。本研究采用田口方法和方差分析(ANOVA),考虑到不同混凝土龄期的抗压强度,研究了对 GPC 工作性最有效的参数,包括 GGBFS 含量、水与粘结剂的比率以及不同类型化学外加剂(萘基外加剂(NPA)和聚羧酸盐基外加剂(PCA))的用量。结果表明,与 PCA 相比,土工聚合物混凝土中的 NPA 提高了抗压强度。基于 NPA 的混合料达到了最高的 28 天抗压强度(69 兆帕),比基于 PCA 的混合料达到的最高 28 天抗压强度(54 兆帕)高出约 27.8%。结果表明,与 PCA 相比,NPA 对 GPC 混合料的工作性(初始坍落度值和坍落度损失率)和抗压强度都有最好的改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Sustainable Slag-based Geopolymer Concrete Using Different Types of Chemical Admixtures

Geopolymer concrete (GPC) has achieved a wide popularity since innovating it as an alternative to conventional concrete because of its superior mechanical characteristics and durability, in addition to being a green concrete due to its low negative impact on the environment. However, GPC still suffers from the problem of its poor workability which suppresses its spread in construction applications. This study investigated the most effective parameters on the workability of GPC including GGBFS content, water to binder ratio, and dosage of different types of chemical admixtures, Naphthalene-Based Admixture (NPA) and Polycarboxylate-Based Admixture (PCA), using Taguchi approach and Analysis of Variance (ANOVA) analysis considering the compressive strength at the different concrete ages. It was observed that NPA, in the geopolymer concrete, improved the compressive strength compared to PCA. The NPA-based mixes achieved the highest 28-day compressive strength, 69 MPa, with about 27.8% more than the highest 28-day compressive strength achieved by the PCA-based mixes, 54 MPa. The obtained results revealed that the NPA has achieved the best improvement for both the workability, in terms of initial slump value and slump loss rate, and the compressive strength of GPC mixes compared to PCA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Concrete Structures and Materials
International Journal of Concrete Structures and Materials CONSTRUCTION & BUILDING TECHNOLOGY-ENGINEERING, CIVIL
CiteScore
6.30
自引率
5.90%
发文量
61
审稿时长
13 weeks
期刊介绍: The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on Properties and performance of concrete and concrete structures Advanced and improved experimental techniques Latest modelling methods Possible improvement and enhancement of concrete properties Structural and microstructural characterization Concrete applications Fiber reinforced concrete technology Concrete waste management.
期刊最新文献
Experimental Investigation on Axial Strength Improvement of Cold-Formed Steel Jacketed Concrete Stub Columns Proposal of a Creep-Experiment Method and Superficial Creep Coefficient Model of CFT Considering a Stress-Redistribution Effect Impact of Rubber Content on Performance of Ultra-High-Performance Rubberised Concrete (UHPRuC) Study on the Diffusion Mechanism of Infiltration Grouting in Fault Fracture Zone Considering the Time-Varying Characteristics of Slurry Viscosity Under Seawater Environment Enhancing the Flexural Capacity of Deteriorated Low-Strength Prestressed Concrete Beam Using Near-Surface Mounted Post-Tensioned Carbon Fiber-Reinforced Polymer Bar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1