{"title":"在纵向数据混合物中进行聚类和精确有限样本模型选择的贝叶斯方法","authors":"M. Corneli, E. Erosheva, X. Qian, M. Lorenzi","doi":"10.1007/s00180-024-01501-5","DOIUrl":null,"url":null,"abstract":"<p>We consider mixtures of longitudinal trajectories, where one trajectory contains measurements over time of the variable of interest for one individual and each individual belongs to one cluster. The number of clusters as well as individual cluster memberships are unknown and must be inferred. We propose an original Bayesian clustering framework that allows us to obtain an exact finite-sample model selection criterion for selecting the number of clusters. Our finite-sample approach is more flexible and parsimonious than asymptotic alternatives such as Bayesian information criterion or integrated classification likelihood criterion in the choice of the number of clusters. Moreover, our approach has other desirable qualities: (i) it keeps the computational effort of the clustering algorithm under control and (ii) it generalizes to several families of regression mixture models, from linear to purely non-parametric. We test our method on simulated datasets as well as on a real world dataset from the Alzheimer’s disease neuroimaging initative database.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"38 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian approach for clustering and exact finite-sample model selection in longitudinal data mixtures\",\"authors\":\"M. Corneli, E. Erosheva, X. Qian, M. Lorenzi\",\"doi\":\"10.1007/s00180-024-01501-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider mixtures of longitudinal trajectories, where one trajectory contains measurements over time of the variable of interest for one individual and each individual belongs to one cluster. The number of clusters as well as individual cluster memberships are unknown and must be inferred. We propose an original Bayesian clustering framework that allows us to obtain an exact finite-sample model selection criterion for selecting the number of clusters. Our finite-sample approach is more flexible and parsimonious than asymptotic alternatives such as Bayesian information criterion or integrated classification likelihood criterion in the choice of the number of clusters. Moreover, our approach has other desirable qualities: (i) it keeps the computational effort of the clustering algorithm under control and (ii) it generalizes to several families of regression mixture models, from linear to purely non-parametric. We test our method on simulated datasets as well as on a real world dataset from the Alzheimer’s disease neuroimaging initative database.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01501-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01501-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A Bayesian approach for clustering and exact finite-sample model selection in longitudinal data mixtures
We consider mixtures of longitudinal trajectories, where one trajectory contains measurements over time of the variable of interest for one individual and each individual belongs to one cluster. The number of clusters as well as individual cluster memberships are unknown and must be inferred. We propose an original Bayesian clustering framework that allows us to obtain an exact finite-sample model selection criterion for selecting the number of clusters. Our finite-sample approach is more flexible and parsimonious than asymptotic alternatives such as Bayesian information criterion or integrated classification likelihood criterion in the choice of the number of clusters. Moreover, our approach has other desirable qualities: (i) it keeps the computational effort of the clustering algorithm under control and (ii) it generalizes to several families of regression mixture models, from linear to purely non-parametric. We test our method on simulated datasets as well as on a real world dataset from the Alzheimer’s disease neuroimaging initative database.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.