案例研究:伊朗未饱和油藏不相溶气体注入深度对采收率的影响

IF 2.5 4区 工程技术 Q2 ENGINEERING, MECHANICAL Journal of Porous Media Pub Date : 2024-05-01 DOI:10.1615/jpormedia.2024052247
Sepideh Zobeidi
{"title":"案例研究:伊朗未饱和油藏不相溶气体注入深度对采收率的影响","authors":"Sepideh Zobeidi","doi":"10.1615/jpormedia.2024052247","DOIUrl":null,"url":null,"abstract":"In saturated oil reservoirs, the pressure of the reservoir is gradually reduced with production of oil, and this ultimately leads to gas production of the reservoir and formation of a gas cap. After the period of natural depletion from oil reservoirs, it is necessary to use secondary and then tertiary methods of EOR. One of the most common methods (if gas is available) is gas injection. By injecting gas, while pressure maintenance and re-pressuring to initial pressure of the reservoir, the recovery factor increases. This increase in recovery factor mainly occurs due to maintenance or increase in pressure and decrease in interfacial tension (IFT) and viscosity.\nIn Iran, except in one of the fields where gas injection is done with the aim of miscible gas injection, other gas injection projects are done with the aim of pressure maintenance. In these projects, the proper place for injection is not taken into consideration and the gas is done in the highest part of the reservoir, the question was raised at what depth the gas injection should be done to be optimal. Therefore, one of the reservoirs in the south of Iran was selected and a feasibility study was conducted with the aim of determining the most suitable injection point.\nIn this study, the issue of the appropriate place for gas injection from the point of view of whether it is in the gas cap, in the middle of the production column, or at near the water/oil contact has been investigated and the results have been presented. Also it is approved that the injection in saturated reservoir has more recovery factor than under saturated reservoir. Finally, injection near water/oil contact is known as the preferred option.","PeriodicalId":50082,"journal":{"name":"Journal of Porous Media","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Case Study: Depth Impact on Recovery of Immiscible Gas Injection in an Iranian Undersaturated Oil Reservoir\",\"authors\":\"Sepideh Zobeidi\",\"doi\":\"10.1615/jpormedia.2024052247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In saturated oil reservoirs, the pressure of the reservoir is gradually reduced with production of oil, and this ultimately leads to gas production of the reservoir and formation of a gas cap. After the period of natural depletion from oil reservoirs, it is necessary to use secondary and then tertiary methods of EOR. One of the most common methods (if gas is available) is gas injection. By injecting gas, while pressure maintenance and re-pressuring to initial pressure of the reservoir, the recovery factor increases. This increase in recovery factor mainly occurs due to maintenance or increase in pressure and decrease in interfacial tension (IFT) and viscosity.\\nIn Iran, except in one of the fields where gas injection is done with the aim of miscible gas injection, other gas injection projects are done with the aim of pressure maintenance. In these projects, the proper place for injection is not taken into consideration and the gas is done in the highest part of the reservoir, the question was raised at what depth the gas injection should be done to be optimal. Therefore, one of the reservoirs in the south of Iran was selected and a feasibility study was conducted with the aim of determining the most suitable injection point.\\nIn this study, the issue of the appropriate place for gas injection from the point of view of whether it is in the gas cap, in the middle of the production column, or at near the water/oil contact has been investigated and the results have been presented. Also it is approved that the injection in saturated reservoir has more recovery factor than under saturated reservoir. Finally, injection near water/oil contact is known as the preferred option.\",\"PeriodicalId\":50082,\"journal\":{\"name\":\"Journal of Porous Media\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/jpormedia.2024052247\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Media","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/jpormedia.2024052247","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在饱和油藏中,随着石油的生产,油藏的压力逐渐降低,最终导致油藏产气并形成气帽。在油藏自然枯竭期过后,有必要使用二级和三级采油方法。最常用的方法之一(如果有天然气)是注入天然气。通过注入天然气,在保持压力并重新加压至储层初始压力的同时,采收率会提高。采收率的提高主要是由于压力的维持或提高以及界面张力(IFT)和粘度的降低。在伊朗,除了一个油田是以混溶气注入为目的进行注气外,其他注气项目都是以压力维持为目的。在这些项目中,没有考虑适当的注气位置,而是在储层的最高处注气。因此,我们选择了伊朗南部的一个储层,并进行了可行性研究,目的是确定最合适的注气点。在这项研究中,我们从是在气帽、生产柱中间还是在水/油接触点附近的角度,对注气的适当位置问题进行了调查,并给出了结果。研究还证实,在饱和储层注气比在饱和储层下注气的采收率更高。最后,在水/油接触点附近注入被认为是首选方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Case Study: Depth Impact on Recovery of Immiscible Gas Injection in an Iranian Undersaturated Oil Reservoir
In saturated oil reservoirs, the pressure of the reservoir is gradually reduced with production of oil, and this ultimately leads to gas production of the reservoir and formation of a gas cap. After the period of natural depletion from oil reservoirs, it is necessary to use secondary and then tertiary methods of EOR. One of the most common methods (if gas is available) is gas injection. By injecting gas, while pressure maintenance and re-pressuring to initial pressure of the reservoir, the recovery factor increases. This increase in recovery factor mainly occurs due to maintenance or increase in pressure and decrease in interfacial tension (IFT) and viscosity. In Iran, except in one of the fields where gas injection is done with the aim of miscible gas injection, other gas injection projects are done with the aim of pressure maintenance. In these projects, the proper place for injection is not taken into consideration and the gas is done in the highest part of the reservoir, the question was raised at what depth the gas injection should be done to be optimal. Therefore, one of the reservoirs in the south of Iran was selected and a feasibility study was conducted with the aim of determining the most suitable injection point. In this study, the issue of the appropriate place for gas injection from the point of view of whether it is in the gas cap, in the middle of the production column, or at near the water/oil contact has been investigated and the results have been presented. Also it is approved that the injection in saturated reservoir has more recovery factor than under saturated reservoir. Finally, injection near water/oil contact is known as the preferred option.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Porous Media
Journal of Porous Media 工程技术-工程:机械
CiteScore
3.50
自引率
8.70%
发文量
89
审稿时长
12.5 months
期刊介绍: The Journal of Porous Media publishes original full-length research articles (and technical notes) in a wide variety of areas related to porous media studies, such as mathematical modeling, numerical and experimental techniques, industrial and environmental heat and mass transfer, conduction, convection, radiation, particle transport and capillary effects, reactive flows, deformable porous media, biomedical applications, and mechanics of the porous substrate. Emphasis will be given to manuscripts that present novel findings pertinent to these areas. The journal will also consider publication of state-of-the-art reviews. Manuscripts applying known methods to previously solved problems or providing results in the absence of scientific motivation or application will not be accepted. Submitted articles should contribute to the understanding of specific scientific problems or to solution techniques that are useful in applications. Papers that link theory with computational practice to provide insight into the processes are welcome.
期刊最新文献
Multi‑scale Experimental Investigations on the Deterioration Mechanism of Sandstone after high-temperature treatment Geometric models for incorporating solid accumulation at the nodes of open-cell foams CONVECTIVE FLOW AND HEAT TRANSPORT OF CLAY NANOFLUID ACROSS A VERTICAL SURFACE IN A DARCY-BRINKMAN POROUS MEDIUM Heat Transfer Enhancement of Modified Sodium Acetate Trihydrate Composite Phase Change Material with Metal Foams An Advanced Nine-Point Scheme based on Finite Analysis in Two-Dimensional Numerical Reservoir Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1