Mojtaba Ahmadi, Seyed Saleh Ghoreishi Amiri, Hadi Dehbovid, Amard Afzalian
{"title":"新型射频 MEMS 开关的设计与仿真--通过三级弹簧锚定","authors":"Mojtaba Ahmadi, Seyed Saleh Ghoreishi Amiri, Hadi Dehbovid, Amard Afzalian","doi":"10.1007/s10825-024-02172-7","DOIUrl":null,"url":null,"abstract":"<div><p>RF-MEMS switches can be categorized into two types based on their connection: metal-to-metal and capacitive. Metal-to-metal switches typically exhibit suboptimal performance compared to capacitive types, as they struggle to efficiently transmit high-frequency signals and power. Conversely, capacitive switches utilize a thin dielectric layer to prevent the beam from attaching to the transmission line in the off-state, facilitating easy release. This paper presents a novel design for a capacitive switch that effectively leverages RF MEMS technology, incorporating an innovative spring design. The proposed capacitive switch offers several advantages over its counterparts, including high isolation, low loss, low actuation voltage, and compact size and weight. Specifically tailored for Ka-band applications, the switch utilizes a spring mechanism to minimize the distance between the cantilever and the transmission line in CPW, thereby reducing the required activation voltage to just 1.5 V. A dielectric layer of SiO<sub>2</sub> with a thickness of 0.1 um is employed to enhance isolation and down-state capacitance. The proposed structural design not only enhances switch performance but also extends its lifespan by reducing stress levels, particularly in the spring component. The dynamic behavior and RF characteristics of the switch are analyzed using the COMSOL Multiphysics package and HFSS software, respectively, according to the findings, the switch demonstrates an S<sub>11</sub> value below − 8.75 dB and an S<sub>21</sub> value above − 1.06 dB across the frequency range of 1 to 40 GHz in the up-state configuration. In the down-state, the switch exhibits remarkable isolation in the Ka-band, with a resonance frequency of 19.53 GHz and an isolation value of − 43.3 dB.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 3","pages":"661 - 671"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and simulation of a novel RF MEMS switch anchored by springs three-levelly\",\"authors\":\"Mojtaba Ahmadi, Seyed Saleh Ghoreishi Amiri, Hadi Dehbovid, Amard Afzalian\",\"doi\":\"10.1007/s10825-024-02172-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>RF-MEMS switches can be categorized into two types based on their connection: metal-to-metal and capacitive. Metal-to-metal switches typically exhibit suboptimal performance compared to capacitive types, as they struggle to efficiently transmit high-frequency signals and power. Conversely, capacitive switches utilize a thin dielectric layer to prevent the beam from attaching to the transmission line in the off-state, facilitating easy release. This paper presents a novel design for a capacitive switch that effectively leverages RF MEMS technology, incorporating an innovative spring design. The proposed capacitive switch offers several advantages over its counterparts, including high isolation, low loss, low actuation voltage, and compact size and weight. Specifically tailored for Ka-band applications, the switch utilizes a spring mechanism to minimize the distance between the cantilever and the transmission line in CPW, thereby reducing the required activation voltage to just 1.5 V. A dielectric layer of SiO<sub>2</sub> with a thickness of 0.1 um is employed to enhance isolation and down-state capacitance. The proposed structural design not only enhances switch performance but also extends its lifespan by reducing stress levels, particularly in the spring component. The dynamic behavior and RF characteristics of the switch are analyzed using the COMSOL Multiphysics package and HFSS software, respectively, according to the findings, the switch demonstrates an S<sub>11</sub> value below − 8.75 dB and an S<sub>21</sub> value above − 1.06 dB across the frequency range of 1 to 40 GHz in the up-state configuration. In the down-state, the switch exhibits remarkable isolation in the Ka-band, with a resonance frequency of 19.53 GHz and an isolation value of − 43.3 dB.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 3\",\"pages\":\"661 - 671\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02172-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02172-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design and simulation of a novel RF MEMS switch anchored by springs three-levelly
RF-MEMS switches can be categorized into two types based on their connection: metal-to-metal and capacitive. Metal-to-metal switches typically exhibit suboptimal performance compared to capacitive types, as they struggle to efficiently transmit high-frequency signals and power. Conversely, capacitive switches utilize a thin dielectric layer to prevent the beam from attaching to the transmission line in the off-state, facilitating easy release. This paper presents a novel design for a capacitive switch that effectively leverages RF MEMS technology, incorporating an innovative spring design. The proposed capacitive switch offers several advantages over its counterparts, including high isolation, low loss, low actuation voltage, and compact size and weight. Specifically tailored for Ka-band applications, the switch utilizes a spring mechanism to minimize the distance between the cantilever and the transmission line in CPW, thereby reducing the required activation voltage to just 1.5 V. A dielectric layer of SiO2 with a thickness of 0.1 um is employed to enhance isolation and down-state capacitance. The proposed structural design not only enhances switch performance but also extends its lifespan by reducing stress levels, particularly in the spring component. The dynamic behavior and RF characteristics of the switch are analyzed using the COMSOL Multiphysics package and HFSS software, respectively, according to the findings, the switch demonstrates an S11 value below − 8.75 dB and an S21 value above − 1.06 dB across the frequency range of 1 to 40 GHz in the up-state configuration. In the down-state, the switch exhibits remarkable isolation in the Ka-band, with a resonance frequency of 19.53 GHz and an isolation value of − 43.3 dB.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.