努力验证克雷洛夫复杂性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-05-12 DOI:10.1093/ptep/ptae073
Ryu Sasaki
{"title":"努力验证克雷洛夫复杂性","authors":"Ryu Sasaki","doi":"10.1093/ptep/ptae073","DOIUrl":null,"url":null,"abstract":"Krylov complexity is considered to provide a measure of the growth of operators evolving under Hamiltonian dynamics. The main strategy is the analysis of the structure of Krylov subspace $\\mathcal {K}_M(\\mathcal {H},\\eta )$ spanned by the multiple applications of the Liouville operator $\\mathcal {L}$ defined by the commutator in terms of a Hamiltonian $\\mathcal {H}$, $\\mathcal {L}:=[\\mathcal {H},\\cdot ]$ acting on an operator η, $\\mathcal {K}_M(\\mathcal {H},\\eta )=\\text{span}\\lbrace \\eta ,\\mathcal {L}\\eta ,\\ldots ,\\mathcal {L}^{M-1}\\eta \\rbrace$. For a given inner product ( ·, ·) of the operators, the orthonormal basis $\\lbrace \\mathcal {O}_n\\rbrace$ is constructed from $\\mathcal {O}_0=\\eta /\\sqrt{(\\eta ,\\eta )}$ by Lanczos algorithm. The moments $\\mu _m=(\\mathcal {O}_0,\\mathcal {L}^m\\mathcal {O}_0)$ are closely related to the important data {bn} called Lanczos coefficients. I present the exact and explicit expressions of the moments {μm} for 16 quantum mechanical systems which are exactly solvable both in the Schrödinger and Heisenberg pictures. The operator η is the variable of the eigenpolynomials. Among them six systems show a clear sign of ‘non-complexity’ as vanishing higher Lanczos coefficients bm = 0, m ≥ 3.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards verifications of Krylov complexity\",\"authors\":\"Ryu Sasaki\",\"doi\":\"10.1093/ptep/ptae073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Krylov complexity is considered to provide a measure of the growth of operators evolving under Hamiltonian dynamics. The main strategy is the analysis of the structure of Krylov subspace $\\\\mathcal {K}_M(\\\\mathcal {H},\\\\eta )$ spanned by the multiple applications of the Liouville operator $\\\\mathcal {L}$ defined by the commutator in terms of a Hamiltonian $\\\\mathcal {H}$, $\\\\mathcal {L}:=[\\\\mathcal {H},\\\\cdot ]$ acting on an operator η, $\\\\mathcal {K}_M(\\\\mathcal {H},\\\\eta )=\\\\text{span}\\\\lbrace \\\\eta ,\\\\mathcal {L}\\\\eta ,\\\\ldots ,\\\\mathcal {L}^{M-1}\\\\eta \\\\rbrace$. For a given inner product ( ·, ·) of the operators, the orthonormal basis $\\\\lbrace \\\\mathcal {O}_n\\\\rbrace$ is constructed from $\\\\mathcal {O}_0=\\\\eta /\\\\sqrt{(\\\\eta ,\\\\eta )}$ by Lanczos algorithm. The moments $\\\\mu _m=(\\\\mathcal {O}_0,\\\\mathcal {L}^m\\\\mathcal {O}_0)$ are closely related to the important data {bn} called Lanczos coefficients. I present the exact and explicit expressions of the moments {μm} for 16 quantum mechanical systems which are exactly solvable both in the Schrödinger and Heisenberg pictures. The operator η is the variable of the eigenpolynomials. Among them six systems show a clear sign of ‘non-complexity’ as vanishing higher Lanczos coefficients bm = 0, m ≥ 3.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/ptep/ptae073\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae073","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

克雷洛夫复杂性被认为是在汉密尔顿动力学条件下演化算子增长的一个度量。主要策略是分析克雷洛夫子空间$\mathcal {K}_M(\mathcal {H},\eta )$的结构,该子空间由柳维尔算子$\mathcal {L}$ 的多重应用所跨越,柳维尔算子$\mathcal {L}$ 由换向器定义,换向器以哈密尔顿算子$\mathcal {H}$, $\mathcal {L}:=[\mathcal {H},\cdot ]$ 作用于算子η,$\mathcal {K}_M(\mathcal {H},\eta )=\text{span}\lbrace \eta ,\mathcal {L}\eta ,\ldots ,\mathcal {L}^{M-1}\eta \rbrace$。对于给定的算子内积(-, -),正交基础 $\lbrace {O}_n\rbrace$ 是通过 Lanczos 算法从 $\mathcal {O}_0=\eta /\sqrt{(\eta ,\eta )}$ 构造出来的。矩 $\mu _m=(\mathcal {O}_0,\mathcal {L}^m\mathcal {O}_0)$ 与称为 Lanczos 系数的重要数据 {bn} 密切相关。我提出了 16 个量子力学系统的矩 {μm} 的精确和明确表达式,这些系统在薛定谔图景和海森堡图景中都是可以精确求解的。算子η是特征多项式的变量。其中六个系统显示出明显的 "非复杂性 "迹象,即高兰克佐斯系数 bm = 0,m ≥ 3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards verifications of Krylov complexity
Krylov complexity is considered to provide a measure of the growth of operators evolving under Hamiltonian dynamics. The main strategy is the analysis of the structure of Krylov subspace $\mathcal {K}_M(\mathcal {H},\eta )$ spanned by the multiple applications of the Liouville operator $\mathcal {L}$ defined by the commutator in terms of a Hamiltonian $\mathcal {H}$, $\mathcal {L}:=[\mathcal {H},\cdot ]$ acting on an operator η, $\mathcal {K}_M(\mathcal {H},\eta )=\text{span}\lbrace \eta ,\mathcal {L}\eta ,\ldots ,\mathcal {L}^{M-1}\eta \rbrace$. For a given inner product ( ·, ·) of the operators, the orthonormal basis $\lbrace \mathcal {O}_n\rbrace$ is constructed from $\mathcal {O}_0=\eta /\sqrt{(\eta ,\eta )}$ by Lanczos algorithm. The moments $\mu _m=(\mathcal {O}_0,\mathcal {L}^m\mathcal {O}_0)$ are closely related to the important data {bn} called Lanczos coefficients. I present the exact and explicit expressions of the moments {μm} for 16 quantum mechanical systems which are exactly solvable both in the Schrödinger and Heisenberg pictures. The operator η is the variable of the eigenpolynomials. Among them six systems show a clear sign of ‘non-complexity’ as vanishing higher Lanczos coefficients bm = 0, m ≥ 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1