Gabriel R. Barrenechea, Antonio Tadeu A. Gomes, Diego Paredes
{"title":"多尺度混合方法","authors":"Gabriel R. Barrenechea, Antonio Tadeu A. Gomes, Diego Paredes","doi":"10.1137/22m1542556","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1628-A1657, June 2024. <br/> Abstract. In this work we propose, analyze, and test a new multiscale finite element method called Multiscale Hybrid (MH) method. The method is built as a close relative to the Multiscale Hybrid Mixed (MHM) method, but with the fundamental difference that a novel definition of the Lagrange multiplier is introduced. The practical implication of this is that both the local problems to compute the basis functions, as well as the global problem, are elliptic, as opposed to the MHM method (and also other previous methods) where a mixed global problem is solved and constrained local problems are solved to compute the local basis functions. The error analysis of the method is based on a hybrid formulation, and a static condensation process is done at the discrete level, so the final global system only involves the Lagrange multipliers. We tested the performance of the method by means of numerical experiments for problems with multiscale coefficients, and we carried out comparisons with the MHM method in terms of performance, accuracy, and memory requirements.","PeriodicalId":49526,"journal":{"name":"SIAM Journal on Scientific Computing","volume":"153 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiscale Hybrid Method\",\"authors\":\"Gabriel R. Barrenechea, Antonio Tadeu A. Gomes, Diego Paredes\",\"doi\":\"10.1137/22m1542556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1628-A1657, June 2024. <br/> Abstract. In this work we propose, analyze, and test a new multiscale finite element method called Multiscale Hybrid (MH) method. The method is built as a close relative to the Multiscale Hybrid Mixed (MHM) method, but with the fundamental difference that a novel definition of the Lagrange multiplier is introduced. The practical implication of this is that both the local problems to compute the basis functions, as well as the global problem, are elliptic, as opposed to the MHM method (and also other previous methods) where a mixed global problem is solved and constrained local problems are solved to compute the local basis functions. The error analysis of the method is based on a hybrid formulation, and a static condensation process is done at the discrete level, so the final global system only involves the Lagrange multipliers. We tested the performance of the method by means of numerical experiments for problems with multiscale coefficients, and we carried out comparisons with the MHM method in terms of performance, accuracy, and memory requirements.\",\"PeriodicalId\":49526,\"journal\":{\"name\":\"SIAM Journal on Scientific Computing\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1542556\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1542556","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1628-A1657, June 2024. Abstract. In this work we propose, analyze, and test a new multiscale finite element method called Multiscale Hybrid (MH) method. The method is built as a close relative to the Multiscale Hybrid Mixed (MHM) method, but with the fundamental difference that a novel definition of the Lagrange multiplier is introduced. The practical implication of this is that both the local problems to compute the basis functions, as well as the global problem, are elliptic, as opposed to the MHM method (and also other previous methods) where a mixed global problem is solved and constrained local problems are solved to compute the local basis functions. The error analysis of the method is based on a hybrid formulation, and a static condensation process is done at the discrete level, so the final global system only involves the Lagrange multipliers. We tested the performance of the method by means of numerical experiments for problems with multiscale coefficients, and we carried out comparisons with the MHM method in terms of performance, accuracy, and memory requirements.
期刊介绍:
The purpose of SIAM Journal on Scientific Computing (SISC) is to advance computational methods for solving scientific and engineering problems.
SISC papers are classified into three categories:
1. Methods and Algorithms for Scientific Computing: Papers in this category may include theoretical analysis, provided that the relevance to applications in science and engineering is demonstrated. They should contain meaningful computational results and theoretical results or strong heuristics supporting the performance of new algorithms.
2. Computational Methods in Science and Engineering: Papers in this section will typically describe novel methodologies for solving a specific problem in computational science or engineering. They should contain enough information about the application to orient other computational scientists but should omit details of interest mainly to the applications specialist.
3. Software and High-Performance Computing: Papers in this category should concern the novel design and development of computational methods and high-quality software, parallel algorithms, high-performance computing issues, new architectures, data analysis, or visualization. The primary focus should be on computational methods that have potentially large impact for an important class of scientific or engineering problems.