了解电化学诱导的烯烃络合:实现电化学烯烃-烷烃分离

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Reaction Chemistry & Engineering Pub Date : 2024-05-13 DOI:10.1039/D4RE00145A
Toshihiro Akashige, Ramraj Vemuri, César A. Urbina Blanco and Miguel A. Modestino
{"title":"了解电化学诱导的烯烃络合:实现电化学烯烃-烷烃分离","authors":"Toshihiro Akashige, Ramraj Vemuri, César A. Urbina Blanco and Miguel A. Modestino","doi":"10.1039/D4RE00145A","DOIUrl":null,"url":null,"abstract":"<p >Olefin–paraffin separation is a critical yet energy-intensive process in the chemical industry, accounting for over 250 trillion BTU per year of global energy consumption. This work explores the use of a redox-active nickel maleonitriledithiolate complex for olefin–paraffin separations. Key performance factors, namely the electrochemical oxidation of the complex and olefin capture utilization fraction, were systematically quantified. Electrochemical studies revealed near-complete oxidation of Ni(<small>II</small>) to Ni(<small>IV</small>) species, suggesting that the electrochemical oxidation step is not a limiting factor in olefin capture. The utilization fraction was found to be strongly dependent on the complexation equilibrium behavior between olefin-bound and unbound states of the complex. Time-resolved kinetic measurements unveiled a sluggish complexation rate, requiring over 36 hours to approach equilibrium. These insights highlight the importance of driving the complexation equilibrium and improving the kinetics to enhance the performance of Ni-based electrochemical swing absorbers for energy-efficient olefin–paraffin separations. The findings lay the groundwork for future optimization strategies and industrial implementation of this sustainable separation technology.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding electrochemically induced olefin complexation: towards electrochemical olefin–paraffin separations†\",\"authors\":\"Toshihiro Akashige, Ramraj Vemuri, César A. Urbina Blanco and Miguel A. Modestino\",\"doi\":\"10.1039/D4RE00145A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Olefin–paraffin separation is a critical yet energy-intensive process in the chemical industry, accounting for over 250 trillion BTU per year of global energy consumption. This work explores the use of a redox-active nickel maleonitriledithiolate complex for olefin–paraffin separations. Key performance factors, namely the electrochemical oxidation of the complex and olefin capture utilization fraction, were systematically quantified. Electrochemical studies revealed near-complete oxidation of Ni(<small>II</small>) to Ni(<small>IV</small>) species, suggesting that the electrochemical oxidation step is not a limiting factor in olefin capture. The utilization fraction was found to be strongly dependent on the complexation equilibrium behavior between olefin-bound and unbound states of the complex. Time-resolved kinetic measurements unveiled a sluggish complexation rate, requiring over 36 hours to approach equilibrium. These insights highlight the importance of driving the complexation equilibrium and improving the kinetics to enhance the performance of Ni-based electrochemical swing absorbers for energy-efficient olefin–paraffin separations. The findings lay the groundwork for future optimization strategies and industrial implementation of this sustainable separation technology.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00145a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00145a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

烯烃-石蜡分离是化学工业中一个关键的能源密集型过程,占全球能源消耗的 250 万亿英热单位/年。这项研究探索了将具有氧化还原活性的马来酰亚胺基二硫酸镍复合物用于烯烃-石蜡分离的方法。系统地量化了关键性能因素,即络合物的电化学氧化和烯烃捕获利用率。电化学研究发现,Ni(II) 几乎完全氧化成 Ni(IV) 物种,这表明电化学氧化步骤不是烯烃捕获的限制因素。研究发现,利用率在很大程度上取决于络合物的烯烃结合态和非结合态之间的复合平衡行为。时间分辨动力学测量揭示了缓慢的复合速率,需要超过 36 小时才能接近平衡。这些发现凸显了推动络合平衡和改善动力学对提高镍基电化学摇摆吸收器的性能以实现烯烃-石蜡高效分离的重要性。这些发现为未来的优化策略和这种可持续分离技术的工业应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding electrochemically induced olefin complexation: towards electrochemical olefin–paraffin separations†

Olefin–paraffin separation is a critical yet energy-intensive process in the chemical industry, accounting for over 250 trillion BTU per year of global energy consumption. This work explores the use of a redox-active nickel maleonitriledithiolate complex for olefin–paraffin separations. Key performance factors, namely the electrochemical oxidation of the complex and olefin capture utilization fraction, were systematically quantified. Electrochemical studies revealed near-complete oxidation of Ni(II) to Ni(IV) species, suggesting that the electrochemical oxidation step is not a limiting factor in olefin capture. The utilization fraction was found to be strongly dependent on the complexation equilibrium behavior between olefin-bound and unbound states of the complex. Time-resolved kinetic measurements unveiled a sluggish complexation rate, requiring over 36 hours to approach equilibrium. These insights highlight the importance of driving the complexation equilibrium and improving the kinetics to enhance the performance of Ni-based electrochemical swing absorbers for energy-efficient olefin–paraffin separations. The findings lay the groundwork for future optimization strategies and industrial implementation of this sustainable separation technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
期刊最新文献
Back cover Immobilization of cationic dye on photoluminescent hydroxyapatite particles through a citric acid bonding layer† Back cover Application of the Three-Reactor Hydrogenation Process in the Recycling Utilization of Waste Lubricating Oil and Study on the Catalyst Deactivation Mechanism Flexible carbon fibres with magnetic ZIF-67 as core layer and in-situ grown NiMn-LDH nanosheets as shell layer for microwaves absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1