用于聚烯烃的特殊、无损、耐久的附着底漆

IF 2.3 4区 材料科学 Q2 CHEMISTRY, APPLIED Journal of Coatings Technology and Research Pub Date : 2024-05-10 DOI:10.1007/s11998-024-00938-z
Giulia Morgese, Konstantin Siegmann, Martin Winkler
{"title":"用于聚烯烃的特殊、无损、耐久的附着底漆","authors":"Giulia Morgese,&nbsp;Konstantin Siegmann,&nbsp;Martin Winkler","doi":"10.1007/s11998-024-00938-z","DOIUrl":null,"url":null,"abstract":"<div><p>Gluing polyolefins [e.g., polyethylene (PE) and polypropylene (PP)] results in a very challenging task. The main reason relies on their low surface energy, which reduces the affinity between the polyolefin surface and the chosen adhesive. To tackle this problem, the most commonly used solutions are physical surface treatments, such as plasma, corona, and flame, which introduce hydrophilic moieties on the plastics surface, thus increasing their surface energy. These approaches require special setups, are unspecific, and can induce material degradation. Furthermore, they provide a transient solution, making the storage of pretreated substrates not recommended. In this work, we developed an easy-to-apply primer for durable bonding of adhesives on PE and PP, as robust alternative to physical treatments. Our primer contains a surface-anchoring moiety and an adhesive-binding group to covalently react with the polyolefin substrate and with the glue. As a surface-anchoring moiety, we chose the perfluorophenylazide (PFPA), which is known to undergo a C–H insertion reaction upon UV activation, while as adhesive-binding groups, we selected OH functions, which can covalently react with the most common commercially available glues. When these two features (i.e., PFPA and OH) are combined in a single molecule, the reaction with the substrate does not occur and the molecule is only physisorbed, inducing no adhesion improvement. Chemisorption only occurs with bicomponent formulations, comprising a hydrophobic trifunctional PFPA and a polymer bearing OH and PFPA groups. Those induced improved adhesion on PP compared to the golden standard plasma with polyurethane-based and two-component epoxy adhesives. Storing the coated substrates at room temperature for up to two months did not alter the adhesion performance, thus further ascribing the developed primers as a promising alternative to plasma treatment.</p></div>","PeriodicalId":619,"journal":{"name":"Journal of Coatings Technology and Research","volume":"21 6","pages":"1921 - 1930"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-024-00938-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Specific, nondestructive, and durable adhesion primer for polyolefins\",\"authors\":\"Giulia Morgese,&nbsp;Konstantin Siegmann,&nbsp;Martin Winkler\",\"doi\":\"10.1007/s11998-024-00938-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gluing polyolefins [e.g., polyethylene (PE) and polypropylene (PP)] results in a very challenging task. The main reason relies on their low surface energy, which reduces the affinity between the polyolefin surface and the chosen adhesive. To tackle this problem, the most commonly used solutions are physical surface treatments, such as plasma, corona, and flame, which introduce hydrophilic moieties on the plastics surface, thus increasing their surface energy. These approaches require special setups, are unspecific, and can induce material degradation. Furthermore, they provide a transient solution, making the storage of pretreated substrates not recommended. In this work, we developed an easy-to-apply primer for durable bonding of adhesives on PE and PP, as robust alternative to physical treatments. Our primer contains a surface-anchoring moiety and an adhesive-binding group to covalently react with the polyolefin substrate and with the glue. As a surface-anchoring moiety, we chose the perfluorophenylazide (PFPA), which is known to undergo a C–H insertion reaction upon UV activation, while as adhesive-binding groups, we selected OH functions, which can covalently react with the most common commercially available glues. When these two features (i.e., PFPA and OH) are combined in a single molecule, the reaction with the substrate does not occur and the molecule is only physisorbed, inducing no adhesion improvement. Chemisorption only occurs with bicomponent formulations, comprising a hydrophobic trifunctional PFPA and a polymer bearing OH and PFPA groups. Those induced improved adhesion on PP compared to the golden standard plasma with polyurethane-based and two-component epoxy adhesives. Storing the coated substrates at room temperature for up to two months did not alter the adhesion performance, thus further ascribing the developed primers as a promising alternative to plasma treatment.</p></div>\",\"PeriodicalId\":619,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":\"21 6\",\"pages\":\"1921 - 1930\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11998-024-00938-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-024-00938-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-024-00938-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

粘合聚烯烃(如聚乙烯(PE)和聚丙烯(PP))是一项极具挑战性的任务。主要原因是它们的表面能较低,这降低了聚烯烃表面与所选粘合剂之间的亲和力。为解决这一问题,最常用的解决方案是物理表面处理,如等离子、电晕和火焰,在塑料表面引入亲水分子,从而增加其表面能。这些方法需要特殊的设置,不具有特异性,而且可能导致材料降解。此外,这些方法提供的是一种瞬时解决方案,因此不建议储存预处理过的基材。在这项工作中,我们开发了一种易于涂抹的处理剂,用于在聚乙烯和聚丙烯上持久粘合粘合剂,作为物理处理的可靠替代方法。我们的处理剂含有表面锚定分子和粘合剂结合基团,可与聚烯烃基材和胶水发生共价反应。作为表面锚定分子,我们选择了全氟苯基氮化物(PFPA),众所周知,它在紫外线激活时会发生 C-H 插入反应;而作为粘合剂结合基团,我们选择了羟基官能团,它可以与市面上最常见的胶水发生共价反应。当这两种功能(即 PFPA 和 OH)结合在一个分子中时,就不会发生与底物的反应,分子只会发生物理吸附,不会改善粘附性。只有双组分配方(包括疏水的三官能 PFPA 和含有 OH 和 PFPA 基团的聚合物)才会发生化学吸附。与使用聚氨酯基和双组分环氧树脂粘合剂的黄金标准等离子体相比,这些粘合剂可提高 PP 上的附着力。将涂过涂层的基材在室温下存放长达两个月也不会改变其附着性能,从而进一步证明了所开发的助料是一种很有前途的等离子处理替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Specific, nondestructive, and durable adhesion primer for polyolefins

Gluing polyolefins [e.g., polyethylene (PE) and polypropylene (PP)] results in a very challenging task. The main reason relies on their low surface energy, which reduces the affinity between the polyolefin surface and the chosen adhesive. To tackle this problem, the most commonly used solutions are physical surface treatments, such as plasma, corona, and flame, which introduce hydrophilic moieties on the plastics surface, thus increasing their surface energy. These approaches require special setups, are unspecific, and can induce material degradation. Furthermore, they provide a transient solution, making the storage of pretreated substrates not recommended. In this work, we developed an easy-to-apply primer for durable bonding of adhesives on PE and PP, as robust alternative to physical treatments. Our primer contains a surface-anchoring moiety and an adhesive-binding group to covalently react with the polyolefin substrate and with the glue. As a surface-anchoring moiety, we chose the perfluorophenylazide (PFPA), which is known to undergo a C–H insertion reaction upon UV activation, while as adhesive-binding groups, we selected OH functions, which can covalently react with the most common commercially available glues. When these two features (i.e., PFPA and OH) are combined in a single molecule, the reaction with the substrate does not occur and the molecule is only physisorbed, inducing no adhesion improvement. Chemisorption only occurs with bicomponent formulations, comprising a hydrophobic trifunctional PFPA and a polymer bearing OH and PFPA groups. Those induced improved adhesion on PP compared to the golden standard plasma with polyurethane-based and two-component epoxy adhesives. Storing the coated substrates at room temperature for up to two months did not alter the adhesion performance, thus further ascribing the developed primers as a promising alternative to plasma treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Coatings Technology and Research
Journal of Coatings Technology and Research 工程技术-材料科学:膜
CiteScore
4.30
自引率
8.70%
发文量
130
审稿时长
2.5 months
期刊介绍: Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.
期刊最新文献
Effect of layer thickness on the thermoelectric properties of fully sprayed poly(3-hexylthiophene-2,5-diyl) thin films doped with chloroauric acid Effects of mica modification with silane on the interface and corrosion resistance of ultraviolet curable epoxy acrylate/mica composite coatings Flame-retardant waterborne polyurethane based on the synergistic effect of HGB and DOPO derivatives Preparation and performance study of GLC/TMP double crosslinking modified waterborne polyurethane for wood coatings A review of thermochromic materials for coating applications: production, protection, and degradation of organic thermochromic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1