人类胫骨平台终末期骨关节炎软骨下骨细胞空泡形态。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-07-01 Epub Date: 2024-05-16 DOI:10.1007/s00223-024-01226-z
Fahimeh Azari, Haniyeh Hemmatian, Anik Banerjee, G Harry van Lenthe
{"title":"人类胫骨平台终末期骨关节炎软骨下骨细胞空泡形态。","authors":"Fahimeh Azari, Haniyeh Hemmatian, Anik Banerjee, G Harry van Lenthe","doi":"10.1007/s00223-024-01226-z","DOIUrl":null,"url":null,"abstract":"<p><p>Subchondral bone remodeling, mediated by osteocytes within the lacuno-canalicular network, plays a crucial role in osteoarthritis (OA) progression. Following cell death, lacunae preserve integrity, offering insights into bone remodeling mechanisms. Limited and controversial data on osteocyte lacuna morphology in OA result from small sample sizes and two-dimensional (2D) techniques that have been used thus far. This study aimed to quantify three-dimensional (3D) osteocyte lacunar characteristics at well-defined tibial plateau locations, known to be differently affected by OA. Specifically, 11 tibial plateaus were obtained from end-stage knee-OA patients with varus deformity. Each plateau provided one sample from the less affected lateral compartment and two samples from the medial compartment, at minimum and maximum bone volume fraction (BV/TV) locations. High-resolution desktop micro-computed tomography (micro-CT) at 0.7 μm voxel resolution imaged the 33 samples. Lacuna number density (Lc.N/BV) and lacuna volume density (Lc.TV/BV) were significantly lower (p < 0.02) in samples from the medial side with maximum BV/TV compared to lateral side samples. In the medial compartment at maximum local BV/TV, mean lacuna volume (Lc.V), total lacuna volume (Lc.TV), and Lc.TV/BV were significantly (p < 0.001) lower than in the region with minimum BV/TV. Lc.N/BV was also significantly lower (p < 0.02) at the maximum local BV/TV location compared to the region with minimum BV/TV. Our findings suggest that subchondral bone lacunae adapt to the changing loads in end-stage OA.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subchondral Bone Osteocyte Lacunae Morphology in End-Stage Osteoarthritis of the Human Tibial Plateau.\",\"authors\":\"Fahimeh Azari, Haniyeh Hemmatian, Anik Banerjee, G Harry van Lenthe\",\"doi\":\"10.1007/s00223-024-01226-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Subchondral bone remodeling, mediated by osteocytes within the lacuno-canalicular network, plays a crucial role in osteoarthritis (OA) progression. Following cell death, lacunae preserve integrity, offering insights into bone remodeling mechanisms. Limited and controversial data on osteocyte lacuna morphology in OA result from small sample sizes and two-dimensional (2D) techniques that have been used thus far. This study aimed to quantify three-dimensional (3D) osteocyte lacunar characteristics at well-defined tibial plateau locations, known to be differently affected by OA. Specifically, 11 tibial plateaus were obtained from end-stage knee-OA patients with varus deformity. Each plateau provided one sample from the less affected lateral compartment and two samples from the medial compartment, at minimum and maximum bone volume fraction (BV/TV) locations. High-resolution desktop micro-computed tomography (micro-CT) at 0.7 μm voxel resolution imaged the 33 samples. Lacuna number density (Lc.N/BV) and lacuna volume density (Lc.TV/BV) were significantly lower (p < 0.02) in samples from the medial side with maximum BV/TV compared to lateral side samples. In the medial compartment at maximum local BV/TV, mean lacuna volume (Lc.V), total lacuna volume (Lc.TV), and Lc.TV/BV were significantly (p < 0.001) lower than in the region with minimum BV/TV. Lc.N/BV was also significantly lower (p < 0.02) at the maximum local BV/TV location compared to the region with minimum BV/TV. Our findings suggest that subchondral bone lacunae adapt to the changing loads in end-stage OA.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00223-024-01226-z\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00223-024-01226-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

软骨下骨重塑是由腔隙-颅骨网络中的骨细胞介导的,在骨关节炎(OA)的发展过程中起着至关重要的作用。细胞死亡后,裂隙保持完整性,为了解骨重塑机制提供了线索。由于样本量较小,且迄今为止一直使用二维(2D)技术,因此有关 OA 中骨细胞腔形态的数据有限且存在争议。本研究旨在量化明确定义的胫骨平台位置的三维(3D)骨细胞空隙特征,已知这些位置受 OA 的影响不同。具体来说,研究人员从患有膝关节外翻畸形的终末期膝关节 OA 患者身上采集了 11 个胫骨平台。每个胫骨平台分别在骨体积分数(BV/TV)最小和最大的位置提供了一个来自受影响较小的外侧区的样本和两个来自内侧区的样本。0.7 μm 像元分辨率的高分辨率桌面微型计算机断层扫描(micro-CT)对 33 个样本进行了成像。腔隙数量密度(Lc.N/BV)和腔隙体积密度(Lc.TV/BV)明显低于(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Subchondral Bone Osteocyte Lacunae Morphology in End-Stage Osteoarthritis of the Human Tibial Plateau.

Subchondral bone remodeling, mediated by osteocytes within the lacuno-canalicular network, plays a crucial role in osteoarthritis (OA) progression. Following cell death, lacunae preserve integrity, offering insights into bone remodeling mechanisms. Limited and controversial data on osteocyte lacuna morphology in OA result from small sample sizes and two-dimensional (2D) techniques that have been used thus far. This study aimed to quantify three-dimensional (3D) osteocyte lacunar characteristics at well-defined tibial plateau locations, known to be differently affected by OA. Specifically, 11 tibial plateaus were obtained from end-stage knee-OA patients with varus deformity. Each plateau provided one sample from the less affected lateral compartment and two samples from the medial compartment, at minimum and maximum bone volume fraction (BV/TV) locations. High-resolution desktop micro-computed tomography (micro-CT) at 0.7 μm voxel resolution imaged the 33 samples. Lacuna number density (Lc.N/BV) and lacuna volume density (Lc.TV/BV) were significantly lower (p < 0.02) in samples from the medial side with maximum BV/TV compared to lateral side samples. In the medial compartment at maximum local BV/TV, mean lacuna volume (Lc.V), total lacuna volume (Lc.TV), and Lc.TV/BV were significantly (p < 0.001) lower than in the region with minimum BV/TV. Lc.N/BV was also significantly lower (p < 0.02) at the maximum local BV/TV location compared to the region with minimum BV/TV. Our findings suggest that subchondral bone lacunae adapt to the changing loads in end-stage OA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1