{"title":"噪音是动物研究设施中的一个外部变量。","authors":"Jeremy G Turner, John R Manker","doi":"10.30802/AALAS-JAALAS-24-000008","DOIUrl":null,"url":null,"abstract":"<p><p>Animal research facilities are noisy environments. The high air change rates required in animal housing spaces tend to create higher noise levels from the heating and cooling systems. Housing rooms are typically constructed of hard wall material that is easily cleaned but simultaneously highly reverberant, meaning that the sound cannot be controlled/attenuated so the sounds that are generated bounce around the room uncontrolled. (Soft, sound-absorbing surfaces generally cannot be used in animal facilities because they collect microbes; various wall surface features and sound control panel options are available, although rarely used.) In addition, many of our husbandry tasks such as cage changing, animal health checks, cleaning, and transporting animals produce high levels of noise. Finally, much of the equipment we have increasingly employed in animal housing spaces, such as ventilated caging motors, biosafety, or procedure cabinets, can generate high levels of background noise, including ultrasound. These and many additional factors conspire to create an acoustic environment that is neither naturalistic nor conducive to a stress-free environment. The acoustic variability both within and between institutions can serve as an enormous confounder for research studies and a threat to our ability to reproduce studies over time and between research laboratories. By gaining a better appreciation for the acoustic variables, paired with transparency in reporting the levels, we might be able to gain a better understanding of their impacts and thereby gain some level of control over such acoustic variables in the animal housing space. The result of this could improve both animal welfare and study reproducibility, helping to address our 3Rs goals of Replacement, Reduction, and Refinement in the animal biomedical research enterprise.</p>","PeriodicalId":94111,"journal":{"name":"Journal of the American Association for Laboratory Animal Science : JAALAS","volume":" ","pages":"209-220"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193427/pdf/","citationCount":"0","resultStr":"{\"title\":\"Noise as an Extrinsic Variable in the Animal Research Facility.\",\"authors\":\"Jeremy G Turner, John R Manker\",\"doi\":\"10.30802/AALAS-JAALAS-24-000008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Animal research facilities are noisy environments. The high air change rates required in animal housing spaces tend to create higher noise levels from the heating and cooling systems. Housing rooms are typically constructed of hard wall material that is easily cleaned but simultaneously highly reverberant, meaning that the sound cannot be controlled/attenuated so the sounds that are generated bounce around the room uncontrolled. (Soft, sound-absorbing surfaces generally cannot be used in animal facilities because they collect microbes; various wall surface features and sound control panel options are available, although rarely used.) In addition, many of our husbandry tasks such as cage changing, animal health checks, cleaning, and transporting animals produce high levels of noise. Finally, much of the equipment we have increasingly employed in animal housing spaces, such as ventilated caging motors, biosafety, or procedure cabinets, can generate high levels of background noise, including ultrasound. These and many additional factors conspire to create an acoustic environment that is neither naturalistic nor conducive to a stress-free environment. The acoustic variability both within and between institutions can serve as an enormous confounder for research studies and a threat to our ability to reproduce studies over time and between research laboratories. By gaining a better appreciation for the acoustic variables, paired with transparency in reporting the levels, we might be able to gain a better understanding of their impacts and thereby gain some level of control over such acoustic variables in the animal housing space. The result of this could improve both animal welfare and study reproducibility, helping to address our 3Rs goals of Replacement, Reduction, and Refinement in the animal biomedical research enterprise.</p>\",\"PeriodicalId\":94111,\"journal\":{\"name\":\"Journal of the American Association for Laboratory Animal Science : JAALAS\",\"volume\":\" \",\"pages\":\"209-220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193427/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Association for Laboratory Animal Science : JAALAS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30802/AALAS-JAALAS-24-000008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Association for Laboratory Animal Science : JAALAS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30802/AALAS-JAALAS-24-000008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Noise as an Extrinsic Variable in the Animal Research Facility.
Animal research facilities are noisy environments. The high air change rates required in animal housing spaces tend to create higher noise levels from the heating and cooling systems. Housing rooms are typically constructed of hard wall material that is easily cleaned but simultaneously highly reverberant, meaning that the sound cannot be controlled/attenuated so the sounds that are generated bounce around the room uncontrolled. (Soft, sound-absorbing surfaces generally cannot be used in animal facilities because they collect microbes; various wall surface features and sound control panel options are available, although rarely used.) In addition, many of our husbandry tasks such as cage changing, animal health checks, cleaning, and transporting animals produce high levels of noise. Finally, much of the equipment we have increasingly employed in animal housing spaces, such as ventilated caging motors, biosafety, or procedure cabinets, can generate high levels of background noise, including ultrasound. These and many additional factors conspire to create an acoustic environment that is neither naturalistic nor conducive to a stress-free environment. The acoustic variability both within and between institutions can serve as an enormous confounder for research studies and a threat to our ability to reproduce studies over time and between research laboratories. By gaining a better appreciation for the acoustic variables, paired with transparency in reporting the levels, we might be able to gain a better understanding of their impacts and thereby gain some level of control over such acoustic variables in the animal housing space. The result of this could improve both animal welfare and study reproducibility, helping to address our 3Rs goals of Replacement, Reduction, and Refinement in the animal biomedical research enterprise.