Jinqing Wang , Hanxiang Guo , Sixue Zeng , Jianqiang Du , Qin Zhang , Ke Wang
{"title":"基于聚丙烯/环烯烃共聚物混合物的薄型、大规模加工的耐高温电容器薄膜","authors":"Jinqing Wang , Hanxiang Guo , Sixue Zeng , Jianqiang Du , Qin Zhang , Ke Wang","doi":"10.1016/j.cej.2024.152237","DOIUrl":null,"url":null,"abstract":"<div><p>In recent decades, enhancing the high-temperature resistance of capacitor films was a research focus, but largescale-producing high-temperature resistant films remains a difficult issue. Herein, we illustrate a series of biaxially orientated polypropylene (BOPP)/cycloolefin copolymer (COC) blended films with a thickness of 3.8 μm prepared by biaxial-stretching. The structural evolution from casting to biaxial stretching was investigated to assess the feasibility of its largescale- processing. The addition of COC improves the orientation-inducing effect of the shearing and stretching field on polypropylene (PP) crystallization, leading a notable increase in lamellar thickness. Meanwhile, the rigid COC increases the activation energy of chain segment movement and decelerates chain relaxation dynamic, thereby increasing trap depth & density to inhibit the migration of charge carriers which reduces the probability of electric breakdown at high temperature. At 120 °C, the blend films exhibited a breakdown field strength 60 % higher than that of the pure BOPP film (from 252.1 MV/m to 402.8 MV/m). When the pure BOPP film completely failed at 105 °C, the blended films still achieved 78 % discharge efficiency and an energy density of 1.31 J/cm<sup>3</sup> at 110 °C & 450 MV/m. Coupled with device capacitance and durability, these films are expected to achieve practical industrial-scale processing.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thin, largescale processed, high-temperature resistant capacitor films based on polypropylene/cycloolefin copolymer blend\",\"authors\":\"Jinqing Wang , Hanxiang Guo , Sixue Zeng , Jianqiang Du , Qin Zhang , Ke Wang\",\"doi\":\"10.1016/j.cej.2024.152237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent decades, enhancing the high-temperature resistance of capacitor films was a research focus, but largescale-producing high-temperature resistant films remains a difficult issue. Herein, we illustrate a series of biaxially orientated polypropylene (BOPP)/cycloolefin copolymer (COC) blended films with a thickness of 3.8 μm prepared by biaxial-stretching. The structural evolution from casting to biaxial stretching was investigated to assess the feasibility of its largescale- processing. The addition of COC improves the orientation-inducing effect of the shearing and stretching field on polypropylene (PP) crystallization, leading a notable increase in lamellar thickness. Meanwhile, the rigid COC increases the activation energy of chain segment movement and decelerates chain relaxation dynamic, thereby increasing trap depth & density to inhibit the migration of charge carriers which reduces the probability of electric breakdown at high temperature. At 120 °C, the blend films exhibited a breakdown field strength 60 % higher than that of the pure BOPP film (from 252.1 MV/m to 402.8 MV/m). When the pure BOPP film completely failed at 105 °C, the blended films still achieved 78 % discharge efficiency and an energy density of 1.31 J/cm<sup>3</sup> at 110 °C & 450 MV/m. Coupled with device capacitance and durability, these films are expected to achieve practical industrial-scale processing.</p></div>\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385894724037240\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894724037240","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Thin, largescale processed, high-temperature resistant capacitor films based on polypropylene/cycloolefin copolymer blend
In recent decades, enhancing the high-temperature resistance of capacitor films was a research focus, but largescale-producing high-temperature resistant films remains a difficult issue. Herein, we illustrate a series of biaxially orientated polypropylene (BOPP)/cycloolefin copolymer (COC) blended films with a thickness of 3.8 μm prepared by biaxial-stretching. The structural evolution from casting to biaxial stretching was investigated to assess the feasibility of its largescale- processing. The addition of COC improves the orientation-inducing effect of the shearing and stretching field on polypropylene (PP) crystallization, leading a notable increase in lamellar thickness. Meanwhile, the rigid COC increases the activation energy of chain segment movement and decelerates chain relaxation dynamic, thereby increasing trap depth & density to inhibit the migration of charge carriers which reduces the probability of electric breakdown at high temperature. At 120 °C, the blend films exhibited a breakdown field strength 60 % higher than that of the pure BOPP film (from 252.1 MV/m to 402.8 MV/m). When the pure BOPP film completely failed at 105 °C, the blended films still achieved 78 % discharge efficiency and an energy density of 1.31 J/cm3 at 110 °C & 450 MV/m. Coupled with device capacitance and durability, these films are expected to achieve practical industrial-scale processing.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.