CRISPR/Cas9 编辑的 StbHLH47 株系显示出铁调节基因表达谱的改变,并增加了块茎茄的铁含量

IF 5.4 Q1 PLANT SCIENCES Current Plant Biology Pub Date : 2024-05-15 DOI:10.1016/j.cpb.2024.100354
Hanny Chauhan , Anshu Alok , Aiana , Santosh K. Upadhyay , Ashutosh Pandey , Kashmir Singh
{"title":"CRISPR/Cas9 编辑的 StbHLH47 株系显示出铁调节基因表达谱的改变,并增加了块茎茄的铁含量","authors":"Hanny Chauhan ,&nbsp;Anshu Alok ,&nbsp;Aiana ,&nbsp;Santosh K. Upadhyay ,&nbsp;Ashutosh Pandey ,&nbsp;Kashmir Singh","doi":"10.1016/j.cpb.2024.100354","DOIUrl":null,"url":null,"abstract":"<div><p>Iron is an essential plant nutrient, and a continuous supply of it is required as it is a key factor in various metabolic processes, including photosynthesis, chlorophyll synthesis, and respiration. Various transcription factors are known to regulate iron homeostasis in plants, and the <em>bHLH</em> transcription factor family is one of them. The <em>StbHLH47</em> is a homologue of the <em>Arabidopsis POPEYE</em> (<em>PYE)</em>, which is known to repress iron homeostasis-related genes in <em>Arabidopsis</em>. Potato is the most consumed vegetable in the world and is low in iron content. We have generated CRISPR/Cas9-edited <em>StbHLH47</em> lines and performed a detailed analysis of these lines. The analysis revealed that the roots of <em>StbHLH47</em> edited lines have decreased ferric chelate reductase (FCR) activity compared to the roots of the wild-type (WT) plant. We also observed that CRISPR/Cas9 edited lines have fewer trichomes when compared to the WT plant. The expression of genes associated with iron homeostasis was also measured. Compared to the control, the expression of <em>StbHLH47</em> was downregulated in the edited lines, while the expression of <em>StNAS4</em>, <em>StOPT3,</em> and <em>StFRO3</em> was upregulated. This suggests the negative regulation of <em>StbHLH47</em> in modulating iron. The iron content was also quantified using inductively coupled plasma mass spectrometry (ICP-MS) and found to be increased in the generated transgenic lines when compared to WT plants. Overall, this study reveals that <em>StbHLH47</em> negatively regulates the expression of iron homeostasis-related genes. <em>StbHLH47</em> edited lines exhibited decreased FCR activity, changes in phenotype, and increased iron content in the potato plants.</p></div><div><h3>Key message</h3><p>This study provides novel insight into the role of <em>StbHLH47</em> in modulating iron content in <em>Solanum tuberosum</em> and controlling the expression of various iron homeostasis-related genes.</p></div>","PeriodicalId":38090,"journal":{"name":"Current Plant Biology","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214662824000367/pdfft?md5=6eaddb1eb7cafa073a27c7711f5e2da3&pid=1-s2.0-S2214662824000367-main.pdf","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9 edited StbHLH47 lines exhibit altered expression profiling of iron regulating genes and increased iron content in Solanum tuberosum\",\"authors\":\"Hanny Chauhan ,&nbsp;Anshu Alok ,&nbsp;Aiana ,&nbsp;Santosh K. Upadhyay ,&nbsp;Ashutosh Pandey ,&nbsp;Kashmir Singh\",\"doi\":\"10.1016/j.cpb.2024.100354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Iron is an essential plant nutrient, and a continuous supply of it is required as it is a key factor in various metabolic processes, including photosynthesis, chlorophyll synthesis, and respiration. Various transcription factors are known to regulate iron homeostasis in plants, and the <em>bHLH</em> transcription factor family is one of them. The <em>StbHLH47</em> is a homologue of the <em>Arabidopsis POPEYE</em> (<em>PYE)</em>, which is known to repress iron homeostasis-related genes in <em>Arabidopsis</em>. Potato is the most consumed vegetable in the world and is low in iron content. We have generated CRISPR/Cas9-edited <em>StbHLH47</em> lines and performed a detailed analysis of these lines. The analysis revealed that the roots of <em>StbHLH47</em> edited lines have decreased ferric chelate reductase (FCR) activity compared to the roots of the wild-type (WT) plant. We also observed that CRISPR/Cas9 edited lines have fewer trichomes when compared to the WT plant. The expression of genes associated with iron homeostasis was also measured. Compared to the control, the expression of <em>StbHLH47</em> was downregulated in the edited lines, while the expression of <em>StNAS4</em>, <em>StOPT3,</em> and <em>StFRO3</em> was upregulated. This suggests the negative regulation of <em>StbHLH47</em> in modulating iron. The iron content was also quantified using inductively coupled plasma mass spectrometry (ICP-MS) and found to be increased in the generated transgenic lines when compared to WT plants. Overall, this study reveals that <em>StbHLH47</em> negatively regulates the expression of iron homeostasis-related genes. <em>StbHLH47</em> edited lines exhibited decreased FCR activity, changes in phenotype, and increased iron content in the potato plants.</p></div><div><h3>Key message</h3><p>This study provides novel insight into the role of <em>StbHLH47</em> in modulating iron content in <em>Solanum tuberosum</em> and controlling the expression of various iron homeostasis-related genes.</p></div>\",\"PeriodicalId\":38090,\"journal\":{\"name\":\"Current Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000367/pdfft?md5=6eaddb1eb7cafa073a27c7711f5e2da3&pid=1-s2.0-S2214662824000367-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214662824000367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214662824000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铁是植物必需的营养元素,需要持续供应,因为它是光合作用、叶绿素合成和呼吸作用等各种代谢过程的关键因素。已知有多种转录因子可以调节植物体内的铁平衡,bHLH 转录因子家族就是其中之一。StbHLH47 是拟南芥 POPEYE(PYE)的同源物,已知它能抑制拟南芥中与铁稳态相关的基因。马铃薯是世界上食用量最大的蔬菜,但含铁量较低。我们生成了 CRISPR/Cas9 编辑的 StbHLH47 株系,并对这些株系进行了详细分析。分析表明,与野生型(WT)植株的根部相比,StbHLH47编辑株系的根部铁螯合还原酶(FCR)活性降低。我们还观察到,与 WT 植物相比,CRISPR/Cas9 编辑株的毛状体较少。我们还测量了与铁平衡相关的基因的表达。与对照相比,编辑株中 StbHLH47 的表达下调,而 StNAS4、StOPT3 和 StFRO3 的表达上调。这表明 StbHLH47 在调节铁方面具有负调控作用。此外,还使用电感耦合等离子体质谱法(ICP-MS)对铁含量进行了定量分析,发现与 WT 植物相比,转基因品系中的铁含量有所增加。总之,这项研究揭示了 StbHLH47 负向调控铁稳态相关基因的表达。StbHLH47 编辑株表现出 FCR 活性降低、表型改变以及马铃薯植株中铁含量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CRISPR/Cas9 edited StbHLH47 lines exhibit altered expression profiling of iron regulating genes and increased iron content in Solanum tuberosum

Iron is an essential plant nutrient, and a continuous supply of it is required as it is a key factor in various metabolic processes, including photosynthesis, chlorophyll synthesis, and respiration. Various transcription factors are known to regulate iron homeostasis in plants, and the bHLH transcription factor family is one of them. The StbHLH47 is a homologue of the Arabidopsis POPEYE (PYE), which is known to repress iron homeostasis-related genes in Arabidopsis. Potato is the most consumed vegetable in the world and is low in iron content. We have generated CRISPR/Cas9-edited StbHLH47 lines and performed a detailed analysis of these lines. The analysis revealed that the roots of StbHLH47 edited lines have decreased ferric chelate reductase (FCR) activity compared to the roots of the wild-type (WT) plant. We also observed that CRISPR/Cas9 edited lines have fewer trichomes when compared to the WT plant. The expression of genes associated with iron homeostasis was also measured. Compared to the control, the expression of StbHLH47 was downregulated in the edited lines, while the expression of StNAS4, StOPT3, and StFRO3 was upregulated. This suggests the negative regulation of StbHLH47 in modulating iron. The iron content was also quantified using inductively coupled plasma mass spectrometry (ICP-MS) and found to be increased in the generated transgenic lines when compared to WT plants. Overall, this study reveals that StbHLH47 negatively regulates the expression of iron homeostasis-related genes. StbHLH47 edited lines exhibited decreased FCR activity, changes in phenotype, and increased iron content in the potato plants.

Key message

This study provides novel insight into the role of StbHLH47 in modulating iron content in Solanum tuberosum and controlling the expression of various iron homeostasis-related genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Plant Biology
Current Plant Biology Agricultural and Biological Sciences-Plant Science
CiteScore
10.90
自引率
1.90%
发文量
32
审稿时长
50 days
期刊介绍: Current Plant Biology aims to acknowledge and encourage interdisciplinary research in fundamental plant sciences with scope to address crop improvement, biodiversity, nutrition and human health. It publishes review articles, original research papers, method papers and short articles in plant research fields, such as systems biology, cell biology, genetics, epigenetics, mathematical modeling, signal transduction, plant-microbe interactions, synthetic biology, developmental biology, biochemistry, molecular biology, physiology, biotechnologies, bioinformatics and plant genomic resources.
期刊最新文献
Effect of biostimulants on the chemical profile of food crops under normal and abiotic stress conditions Sustainable nitrogen solutions: Cyanobacteria-powered plant biotechnology for conservation and metabolite production Metabolomic analyses during chayote (Sechium edule var. virens levis) seed germination under the influence of growth regulators Arabidopsis B-BOX DOMAIN PROTEIN14/15/16 form a feedback loop with ELONGATED HYPOCOTYL 5 and PHYTOCHROME-INTERACTING FACTORs to regulate hypocotyl elongation Genome-wide identification of TCP transcription factors and functional role of UrTCP4 in regulating terpenoid indole alkaloids biosynthesis in Uncaria rhynchophylla
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1