Peichi Zhou, Chen Li, Jian Zhang, Changbo Wang, Hong Qin, Long Liu
{"title":"基于变换器的新型矢量化道路设计图形生成模型","authors":"Peichi Zhou, Chen Li, Jian Zhang, Changbo Wang, Hong Qin, Long Liu","doi":"10.1002/cav.2267","DOIUrl":null,"url":null,"abstract":"<p>Road network design, as an important part of landscape modeling, shows a great significance in automatic driving, video game development, and disaster simulation. To date, this task remains labor-intensive, tedious and time-consuming. Many improved techniques have been proposed during the last two decades. Nevertheless, most of the state-of-the-art methods still encounter problems of intuitiveness, usefulness and/or interactivity. As a rapid deviation from the conventional road design, this paper advocates an improved road modeling framework for automatic and interactive road production driven by geographical maps (including elevation, water, vegetation maps). Our method integrates the capability of flexible image generation models with powerful transformer architecture to afford a vectorized road network. We firstly construct a dataset that includes road graphs, density map and their corresponding geographical maps. Secondly, we develop a density map generation network based on image translation model with an attention mechanism to predict a road density map. The usage of density map facilitates faster convergence and better performance, which also serves as the input for road graph generation. Thirdly, we employ the transformer architecture to evolve density maps to road graphs. Our comprehensive experimental results have verified the efficiency, robustness and applicability of our newly-proposed framework for road design.</p>","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel transformer-based graph generation model for vectorized road design\",\"authors\":\"Peichi Zhou, Chen Li, Jian Zhang, Changbo Wang, Hong Qin, Long Liu\",\"doi\":\"10.1002/cav.2267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Road network design, as an important part of landscape modeling, shows a great significance in automatic driving, video game development, and disaster simulation. To date, this task remains labor-intensive, tedious and time-consuming. Many improved techniques have been proposed during the last two decades. Nevertheless, most of the state-of-the-art methods still encounter problems of intuitiveness, usefulness and/or interactivity. As a rapid deviation from the conventional road design, this paper advocates an improved road modeling framework for automatic and interactive road production driven by geographical maps (including elevation, water, vegetation maps). Our method integrates the capability of flexible image generation models with powerful transformer architecture to afford a vectorized road network. We firstly construct a dataset that includes road graphs, density map and their corresponding geographical maps. Secondly, we develop a density map generation network based on image translation model with an attention mechanism to predict a road density map. The usage of density map facilitates faster convergence and better performance, which also serves as the input for road graph generation. Thirdly, we employ the transformer architecture to evolve density maps to road graphs. Our comprehensive experimental results have verified the efficiency, robustness and applicability of our newly-proposed framework for road design.</p>\",\"PeriodicalId\":50645,\"journal\":{\"name\":\"Computer Animation and Virtual Worlds\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Animation and Virtual Worlds\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cav.2267\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cav.2267","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
A novel transformer-based graph generation model for vectorized road design
Road network design, as an important part of landscape modeling, shows a great significance in automatic driving, video game development, and disaster simulation. To date, this task remains labor-intensive, tedious and time-consuming. Many improved techniques have been proposed during the last two decades. Nevertheless, most of the state-of-the-art methods still encounter problems of intuitiveness, usefulness and/or interactivity. As a rapid deviation from the conventional road design, this paper advocates an improved road modeling framework for automatic and interactive road production driven by geographical maps (including elevation, water, vegetation maps). Our method integrates the capability of flexible image generation models with powerful transformer architecture to afford a vectorized road network. We firstly construct a dataset that includes road graphs, density map and their corresponding geographical maps. Secondly, we develop a density map generation network based on image translation model with an attention mechanism to predict a road density map. The usage of density map facilitates faster convergence and better performance, which also serves as the input for road graph generation. Thirdly, we employ the transformer architecture to evolve density maps to road graphs. Our comprehensive experimental results have verified the efficiency, robustness and applicability of our newly-proposed framework for road design.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.