褪黑激素对动物体外卵母细胞成熟和胚胎发育的潜在影响。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-14 DOI:10.1093/biolre/ioae077
Parisa Nadri, Azadeh Zahmatkesh, Azizollah Bakhtari
{"title":"褪黑激素对动物体外卵母细胞成熟和胚胎发育的潜在影响。","authors":"Parisa Nadri, Azadeh Zahmatkesh, Azizollah Bakhtari","doi":"10.1093/biolre/ioae077","DOIUrl":null,"url":null,"abstract":"<p><p>Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The potential effect of melatonin on in vitro oocyte maturation and embryo development in animals.\",\"authors\":\"Parisa Nadri, Azadeh Zahmatkesh, Azizollah Bakhtari\",\"doi\":\"10.1093/biolre/ioae077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/biolre/ioae077\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/biolre/ioae077","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

褪黑素是一种激素,主要由松果体在昼夜节律周期中分泌,白天含量低,夜间含量高。它参与多种生理功能,包括免疫系统、昼夜节律、生殖、受精和胚胎发育。此外,褪黑激素还能清除活性氧和活性氮,增强抗氧化防御能力,阻断促炎细胞因子的转录因子,从而在体内发挥抗炎和抗氧化作用。据报道,它的保护活性在各种生殖生物技术过程中都很有效,包括体外成熟、胚胎发育和存活率。在这篇综合综述中,我们旨在总结和讨论褪黑激素通过不同发育途径对不同哺乳动物物种的卵母细胞成熟和胚胎发育的潜在机制和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The potential effect of melatonin on in vitro oocyte maturation and embryo development in animals.

Melatonin is a hormone mainly secreted by the pineal gland during the circadian cycle, with low levels during the daytime and prominent levels during the night. It is involved in numerous physiological functions including the immune system, circadian rhythm, reproduction, fertilization, and embryo development. In addition, melatonin exerts anti-inflammatory and antioxidant effects inside the body by scavenging reactive oxygen and reactive nitrogen species, increasing antioxidant defenses, and blocking the transcription factors of pro-inflammatory cytokines. Its protective activity has been reported to be effective in various reproductive biotechnological processes, including in vitro maturation (IVM), embryo development, and survival rates. In this comprehensive review, our objective is to summarize and debate the potential mechanism and impact of melatonin on oocyte maturation and embryo development through various developmental routes in different mammalian species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1