{"title":"利用光谱成像 CT 数据进行三维化学成分分析的先验降维快速计算方法。","authors":"Motoki Shiga, Taisuke Ono, Kenichi Morishita, Keiji Kuno, Nanase Moriguchi","doi":"10.1093/jmicro/dfae027","DOIUrl":null,"url":null,"abstract":"<p><p>Spectral image (SI) measurement techniques, such as X-ray absorption fine structure (XAFS) imaging and scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) or electron energy loss spectroscopy (EELS), are useful for identifying chemical structures in composite materials. Machine-learning techniques have been developed for automatic analysis of SI data and their usefulness has been proven. Recently, an extended measurement technique combining SI with a computed tomography (CT) technique (CT-SI), such as CT-XAFS and STEM-EDS/EELS tomography, was developed to identify the three-dimensional (3D) structures of chemical components. CT-SI analysis can be conducted by combining CT reconstruction algorithms and chemical component analysis based on machine-learning techniques. However, this analysis incurs high-computational costs owing to the size of the CT-SI datasets. To address this problem, this study proposed a fast computational approach for 3D chemical component analysis in an unsupervised learning setting. The primary idea for reducing the computational cost involved compressing the CT-SI data prior to CT computation and performing 3D reconstruction and chemical component analysis on the compressed data. The proposed approach significantly reduced the computational cost without losing information about the 3D structure and chemical components. We experimentally evaluated the proposed approach using synthetic and real CT-XAFS data, which demonstrated that our approach achieved a significantly faster computational speed than the conventional approach while maintaining analysis performance. As the proposed procedure can be implemented with any CT algorithm, it is expected to accelerate 3D analyses with sparse regularized CT algorithms in noisy and sparse CT-SI datasets.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"488-498"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging.\",\"authors\":\"Motoki Shiga, Taisuke Ono, Kenichi Morishita, Keiji Kuno, Nanase Moriguchi\",\"doi\":\"10.1093/jmicro/dfae027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spectral image (SI) measurement techniques, such as X-ray absorption fine structure (XAFS) imaging and scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) or electron energy loss spectroscopy (EELS), are useful for identifying chemical structures in composite materials. Machine-learning techniques have been developed for automatic analysis of SI data and their usefulness has been proven. Recently, an extended measurement technique combining SI with a computed tomography (CT) technique (CT-SI), such as CT-XAFS and STEM-EDS/EELS tomography, was developed to identify the three-dimensional (3D) structures of chemical components. CT-SI analysis can be conducted by combining CT reconstruction algorithms and chemical component analysis based on machine-learning techniques. However, this analysis incurs high-computational costs owing to the size of the CT-SI datasets. To address this problem, this study proposed a fast computational approach for 3D chemical component analysis in an unsupervised learning setting. The primary idea for reducing the computational cost involved compressing the CT-SI data prior to CT computation and performing 3D reconstruction and chemical component analysis on the compressed data. The proposed approach significantly reduced the computational cost without losing information about the 3D structure and chemical components. We experimentally evaluated the proposed approach using synthetic and real CT-XAFS data, which demonstrated that our approach achieved a significantly faster computational speed than the conventional approach while maintaining analysis performance. As the proposed procedure can be implemented with any CT algorithm, it is expected to accelerate 3D analyses with sparse regularized CT algorithms in noisy and sparse CT-SI datasets.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"488-498\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfae027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
光谱图像(SI)测量技术,如 X 射线吸收精细结构(XAFS)成像和扫描透射电子显微镜(STEM)与能量色散 X 射线光谱(EDS)或电子能量损失光谱(EELS),对于确定复合材料中的化学结构非常有用。目前已开发出用于自动分析 SI 数据的机器学习技术,其实用性已得到证实。最近,一种将 SI 与计算机断层扫描(CT)技术(CT-SI)(如 CT-XAFS 和 STEM-EDS/EELS 断层扫描)相结合的扩展测量技术被开发出来,用于识别化学成分的三维(3D)结构。CT-SI 分析可通过结合 CT 重建算法和基于机器学习技术的化学成分分析来进行。然而,由于 CT-SI 数据集的大小,这种分析会产生很高的计算成本。为解决这一问题,本研究提出了一种在无监督学习环境下进行三维化学成分分析的快速计算方法。降低计算成本的主要思路是在 CT 计算之前压缩 CT-SI 数据,并在压缩数据上执行三维重建和化学成分分析。所提出的方法在不丢失三维结构和化学成分信息的情况下大大降低了计算成本。我们使用合成和真实的 CT-XAFS 数据对提出的方法进行了实验评估,结果表明我们的方法在保持分析性能的同时,计算速度明显快于传统方法。由于所提出的程序可以用任何 CT 算法来实现,因此有望在有噪声和稀疏的 CT-SI 数据集中加速稀疏正则化 CT 算法的三维分析。
Fast computational approach with prior dimension reduction for three-dimensional chemical component analysis using CT data of spectral imaging.
Spectral image (SI) measurement techniques, such as X-ray absorption fine structure (XAFS) imaging and scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) or electron energy loss spectroscopy (EELS), are useful for identifying chemical structures in composite materials. Machine-learning techniques have been developed for automatic analysis of SI data and their usefulness has been proven. Recently, an extended measurement technique combining SI with a computed tomography (CT) technique (CT-SI), such as CT-XAFS and STEM-EDS/EELS tomography, was developed to identify the three-dimensional (3D) structures of chemical components. CT-SI analysis can be conducted by combining CT reconstruction algorithms and chemical component analysis based on machine-learning techniques. However, this analysis incurs high-computational costs owing to the size of the CT-SI datasets. To address this problem, this study proposed a fast computational approach for 3D chemical component analysis in an unsupervised learning setting. The primary idea for reducing the computational cost involved compressing the CT-SI data prior to CT computation and performing 3D reconstruction and chemical component analysis on the compressed data. The proposed approach significantly reduced the computational cost without losing information about the 3D structure and chemical components. We experimentally evaluated the proposed approach using synthetic and real CT-XAFS data, which demonstrated that our approach achieved a significantly faster computational speed than the conventional approach while maintaining analysis performance. As the proposed procedure can be implemented with any CT algorithm, it is expected to accelerate 3D analyses with sparse regularized CT algorithms in noisy and sparse CT-SI datasets.