用 SMA-GFRP-ECC 智能复合材料加固混凝土梁抗弯性能的实验研究

IF 2.4 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Intelligent Material Systems and Structures Pub Date : 2024-05-16 DOI:10.1177/1045389x241252290
Hui Qian, Xiangyu Wang, Yujing Wang, Shuqian Duan, Jiecheng Xiong
{"title":"用 SMA-GFRP-ECC 智能复合材料加固混凝土梁抗弯性能的实验研究","authors":"Hui Qian, Xiangyu Wang, Yujing Wang, Shuqian Duan, Jiecheng Xiong","doi":"10.1177/1045389x241252290","DOIUrl":null,"url":null,"abstract":"The structural performance improvement of concrete members is by far a crucial theoretical issue for engineers, and the development of modern smart and composite materials makes it possible to gradually enhance the durability design of the concrete structure. In this study, six beams of the same size and reinforcement ratio, the proposed composite beam (SMA-GFRP-ECC) and five comparative beams (RC, R-ECC, SS-ECC, GFRP-ECC, SMA-ECC), were designed and tested under low-cycle unidirectional cyclic loading and unloading conditions. The energy dissipation capacity, displacement ductility, residual deformation, and self-repairing performance of each concrete beam were evaluated. Afterward, a concise calculation model for the studied composite beam is deduced and developed based on the existing relevant constitutive models and concrete assumptions. The test results indicate that compared with RC beams, the composite reinforced ECC beams show obvious multi-cracking and smaller crack width during the loading process and have good bending ductility. The innovative SMA-GFRP-ECC beam is capable of a high bearing capacity, ductility, and damage self-repairing. The new proposed beam has more than 80% of the maximum crack width recovery capacity during unloading. Hence, the proposed SMA-GFRP-ECC beam is a rather good first attempt of strengthened beams, combining the advantages of SMA, GFRP, and ECC.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on flexural performance of concrete beams strengthened with SMA-GFRP-ECC smart composite materials\",\"authors\":\"Hui Qian, Xiangyu Wang, Yujing Wang, Shuqian Duan, Jiecheng Xiong\",\"doi\":\"10.1177/1045389x241252290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The structural performance improvement of concrete members is by far a crucial theoretical issue for engineers, and the development of modern smart and composite materials makes it possible to gradually enhance the durability design of the concrete structure. In this study, six beams of the same size and reinforcement ratio, the proposed composite beam (SMA-GFRP-ECC) and five comparative beams (RC, R-ECC, SS-ECC, GFRP-ECC, SMA-ECC), were designed and tested under low-cycle unidirectional cyclic loading and unloading conditions. The energy dissipation capacity, displacement ductility, residual deformation, and self-repairing performance of each concrete beam were evaluated. Afterward, a concise calculation model for the studied composite beam is deduced and developed based on the existing relevant constitutive models and concrete assumptions. The test results indicate that compared with RC beams, the composite reinforced ECC beams show obvious multi-cracking and smaller crack width during the loading process and have good bending ductility. The innovative SMA-GFRP-ECC beam is capable of a high bearing capacity, ductility, and damage self-repairing. The new proposed beam has more than 80% of the maximum crack width recovery capacity during unloading. Hence, the proposed SMA-GFRP-ECC beam is a rather good first attempt of strengthened beams, combining the advantages of SMA, GFRP, and ECC.\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389x241252290\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389x241252290","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高混凝土构件的结构性能是工程师们迄今为止面临的一个重要理论问题,而现代智能材料和复合材料的发展则为逐步提高混凝土结构的耐久性设计提供了可能。本研究设计了六种尺寸和配筋率相同的梁,即所提出的复合梁(SMA-GFRP-ECC)和五种对比梁(RC、R-ECC、SS-ECC、GFRP-ECC、SMA-ECC),并在低周期单向循环加载和卸载条件下进行了测试。对每种混凝土梁的耗能能力、位移延性、残余变形和自修复性能进行了评估。随后,根据现有的相关结构模型和混凝土假设,推导并建立了所研究复合梁的简明计算模型。试验结果表明,与 RC 梁相比,复合材料加固的 ECC 梁在加载过程中表现出明显的多裂缝和较小的裂缝宽度,并且具有良好的弯曲延性。创新的 SMA-GFRP-ECC 梁具有较高的承载能力、延性和损伤自修复能力。新型 SMA-GFRP-ECC 梁在卸载过程中的最大裂缝宽度恢复能力超过 80%。因此,拟议的 SMA-GFRP-ECC 梁是结合了 SMA、GFRP 和 ECC 优点的加固梁的首次尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation on flexural performance of concrete beams strengthened with SMA-GFRP-ECC smart composite materials
The structural performance improvement of concrete members is by far a crucial theoretical issue for engineers, and the development of modern smart and composite materials makes it possible to gradually enhance the durability design of the concrete structure. In this study, six beams of the same size and reinforcement ratio, the proposed composite beam (SMA-GFRP-ECC) and five comparative beams (RC, R-ECC, SS-ECC, GFRP-ECC, SMA-ECC), were designed and tested under low-cycle unidirectional cyclic loading and unloading conditions. The energy dissipation capacity, displacement ductility, residual deformation, and self-repairing performance of each concrete beam were evaluated. Afterward, a concise calculation model for the studied composite beam is deduced and developed based on the existing relevant constitutive models and concrete assumptions. The test results indicate that compared with RC beams, the composite reinforced ECC beams show obvious multi-cracking and smaller crack width during the loading process and have good bending ductility. The innovative SMA-GFRP-ECC beam is capable of a high bearing capacity, ductility, and damage self-repairing. The new proposed beam has more than 80% of the maximum crack width recovery capacity during unloading. Hence, the proposed SMA-GFRP-ECC beam is a rather good first attempt of strengthened beams, combining the advantages of SMA, GFRP, and ECC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent Material Systems and Structures
Journal of Intelligent Material Systems and Structures 工程技术-材料科学:综合
CiteScore
5.40
自引率
11.10%
发文量
126
审稿时长
4.7 months
期刊介绍: The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.
期刊最新文献
A modified parametric model to predict visco-elastic properties of magneto-rheological elastomers at non-LVE region Simultaneous position and force control of a SMA-actuated continuum robotic module A facile method to fabricate auxetic polymer foams A low-frequency multidirectional piezoelectric vibration energy harvester using a universal joint structure Development of a fail-safe magnetorheological fluid device using electro and permanent magnets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1