{"title":"利用三维扩散模型分析在光聚合物上记录斐波那契透镜的情况","authors":"Juan Carlos Bravo","doi":"10.1051/jeos/2024026","DOIUrl":null,"url":null,"abstract":"In this work a three-dimensional diffusion model is used to model photopolymers as a recording media. This model allows us to predict the properties of the Diffractive Optical Elements (DOEs) once we recorded into the photopolymer. This model had never been tested with more complex elements, such as multifocal diffractive lenses, as presented in the following in this work. In addition, the model includes; the estimation of the refractive index modulation, the low-pass filtering effect due to the experimental optical setup, and the evolution of the transverse intensity distribution. In this way, the selection of the appropriate material characteristics depending on the intended DOE application is made possible. Specifically, an acrylamide-based PVA/AA photopolymer is simulated using the proposed model. Moreover,\ncoverplating and index matching systems are considered together to avoid the effects of thickness variation. Furthermore, in order to compare their properties using the proposed model, we focus on Fibonacci lenses (FL), a type of bifocal lenses. This allows us to evaluate the dependence of the focii intensity on the polymerisation rate, the diffusivity parameter, low-pass filtering effect and the use of the index matching system for these lenses. This enables us to know the recording parameters in order to produce this type of multifocal diffractive lenses with higher quality and precision.","PeriodicalId":674,"journal":{"name":"Journal of the European Optical Society-Rapid Publications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the recording of Fibonacci lenses on photopolymers with 3-D diffusion model\",\"authors\":\"Juan Carlos Bravo\",\"doi\":\"10.1051/jeos/2024026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a three-dimensional diffusion model is used to model photopolymers as a recording media. This model allows us to predict the properties of the Diffractive Optical Elements (DOEs) once we recorded into the photopolymer. This model had never been tested with more complex elements, such as multifocal diffractive lenses, as presented in the following in this work. In addition, the model includes; the estimation of the refractive index modulation, the low-pass filtering effect due to the experimental optical setup, and the evolution of the transverse intensity distribution. In this way, the selection of the appropriate material characteristics depending on the intended DOE application is made possible. Specifically, an acrylamide-based PVA/AA photopolymer is simulated using the proposed model. Moreover,\\ncoverplating and index matching systems are considered together to avoid the effects of thickness variation. Furthermore, in order to compare their properties using the proposed model, we focus on Fibonacci lenses (FL), a type of bifocal lenses. This allows us to evaluate the dependence of the focii intensity on the polymerisation rate, the diffusivity parameter, low-pass filtering effect and the use of the index matching system for these lenses. This enables us to know the recording parameters in order to produce this type of multifocal diffractive lenses with higher quality and precision.\",\"PeriodicalId\":674,\"journal\":{\"name\":\"Journal of the European Optical Society-Rapid Publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Optical Society-Rapid Publications\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://doi.org/10.1051/jeos/2024026\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Optical Society-Rapid Publications","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1051/jeos/2024026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们使用了一个三维扩散模型来模拟作为记录介质的光聚合物。通过该模型,我们可以预测衍射光学元件 (DOE) 在记录到光聚合物中后的特性。该模型从未在更复杂的元件(如多焦衍射透镜)上进行过测试,本作品将在下文中介绍。此外,该模型还包括折射率调制的估算、实验光学装置造成的低通滤波效应以及横向强度分布的演变。这样,就可以根据 DOE 的预期应用选择合适的材料特性。具体来说,我们使用所提出的模型模拟了一种丙烯酰胺基 PVA/AA 光聚合物。此外,还同时考虑了覆盖层和指数匹配系统,以避免厚度变化的影响。此外,为了使用提出的模型比较它们的特性,我们重点研究了双焦点透镜的一种--斐波那契透镜(FL)。这使我们能够评估聚焦强度与聚合率、扩散参数、低通滤波效果以及这些透镜使用的指数匹配系统之间的关系。这使我们能够了解记录参数,以便生产出质量和精度更高的多焦衍射透镜。
Analysis of the recording of Fibonacci lenses on photopolymers with 3-D diffusion model
In this work a three-dimensional diffusion model is used to model photopolymers as a recording media. This model allows us to predict the properties of the Diffractive Optical Elements (DOEs) once we recorded into the photopolymer. This model had never been tested with more complex elements, such as multifocal diffractive lenses, as presented in the following in this work. In addition, the model includes; the estimation of the refractive index modulation, the low-pass filtering effect due to the experimental optical setup, and the evolution of the transverse intensity distribution. In this way, the selection of the appropriate material characteristics depending on the intended DOE application is made possible. Specifically, an acrylamide-based PVA/AA photopolymer is simulated using the proposed model. Moreover,
coverplating and index matching systems are considered together to avoid the effects of thickness variation. Furthermore, in order to compare their properties using the proposed model, we focus on Fibonacci lenses (FL), a type of bifocal lenses. This allows us to evaluate the dependence of the focii intensity on the polymerisation rate, the diffusivity parameter, low-pass filtering effect and the use of the index matching system for these lenses. This enables us to know the recording parameters in order to produce this type of multifocal diffractive lenses with higher quality and precision.
期刊介绍:
Rapid progress in optics and photonics has broadened its application enormously into many branches, including information and communication technology, security, sensing, bio- and medical sciences, healthcare and chemistry.
Recent achievements in other sciences have allowed continual discovery of new natural mysteries and formulation of challenging goals for optics that require further development of modern concepts and running fundamental research.
The Journal of the European Optical Society – Rapid Publications (JEOS:RP) aims to tackle all of the aforementioned points in the form of prompt, scientific, high-quality communications that report on the latest findings. It presents emerging technologies and outlining strategic goals in optics and photonics.
The journal covers both fundamental and applied topics, including but not limited to:
Classical and quantum optics
Light/matter interaction
Optical communication
Micro- and nanooptics
Nonlinear optical phenomena
Optical materials
Optical metrology
Optical spectroscopy
Colour research
Nano and metamaterials
Modern photonics technology
Optical engineering, design and instrumentation
Optical applications in bio-physics and medicine
Interdisciplinary fields using photonics, such as in energy, climate change and cultural heritage
The journal aims to provide readers with recent and important achievements in optics/photonics and, as its name suggests, it strives for the shortest possible publication time.