透过触觉看世界

IF 3.6 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Pub Date : 2024-05-13 DOI:10.1145/3659612
Ziyu Wu, Fangting Xie, Yiran Fang, Zhen Liang, Quan Wan, Yufan Xiong, Xiaohui Cai
{"title":"透过触觉看世界","authors":"Ziyu Wu, Fangting Xie, Yiran Fang, Zhen Liang, Quan Wan, Yufan Xiong, Xiaohui Cai","doi":"10.1145/3659612","DOIUrl":null,"url":null,"abstract":"Humans spend about one-third of their lives resting. Reconstructing human dynamics in in-bed scenarios is of considerable significance in sleep studies, bedsore monitoring, and biomedical factor extractions. However, the mainstream human pose and shape estimation methods mainly focus on visual cues, facing serious issues in non-line-of-sight environments. Since in-bed scenarios contain complicated human-environment contact, pressure-sensing bedsheets provide a non-invasive and privacy-preserving approach to capture the pressure distribution on the contact surface, and have shown prospects in many downstream tasks. However, few studies focus on in-bed human mesh recovery. To explore the potential of reconstructing human meshes from the sensed pressure distribution, we first build a high-quality temporal human in-bed pose dataset, TIP, with 152K multi-modality synchronized images. We then propose a label generation pipeline for in-bed scenarios to generate reliable 3D mesh labels with a SMPLify-based optimizer. Finally, we present PIMesh, a simple yet effective temporal human shape estimator to directly generate human meshes from pressure image sequences. We conduct various experiments to evaluate PIMesh's performance, showing that PIMesh archives 79.17mm joint position errors on our TIP dataset. The results demonstrate that the pressure-sensing bedsheet could be a promising alternative for long-term in-bed human shape estimation.","PeriodicalId":20553,"journal":{"name":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seeing through the Tactile\",\"authors\":\"Ziyu Wu, Fangting Xie, Yiran Fang, Zhen Liang, Quan Wan, Yufan Xiong, Xiaohui Cai\",\"doi\":\"10.1145/3659612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humans spend about one-third of their lives resting. Reconstructing human dynamics in in-bed scenarios is of considerable significance in sleep studies, bedsore monitoring, and biomedical factor extractions. However, the mainstream human pose and shape estimation methods mainly focus on visual cues, facing serious issues in non-line-of-sight environments. Since in-bed scenarios contain complicated human-environment contact, pressure-sensing bedsheets provide a non-invasive and privacy-preserving approach to capture the pressure distribution on the contact surface, and have shown prospects in many downstream tasks. However, few studies focus on in-bed human mesh recovery. To explore the potential of reconstructing human meshes from the sensed pressure distribution, we first build a high-quality temporal human in-bed pose dataset, TIP, with 152K multi-modality synchronized images. We then propose a label generation pipeline for in-bed scenarios to generate reliable 3D mesh labels with a SMPLify-based optimizer. Finally, we present PIMesh, a simple yet effective temporal human shape estimator to directly generate human meshes from pressure image sequences. We conduct various experiments to evaluate PIMesh's performance, showing that PIMesh archives 79.17mm joint position errors on our TIP dataset. The results demonstrate that the pressure-sensing bedsheet could be a promising alternative for long-term in-bed human shape estimation.\",\"PeriodicalId\":20553,\"journal\":{\"name\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3659612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3659612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

人类一生中约有三分之一的时间在休息。在睡眠研究、褥疮监测和生物医学因素提取中,重建床上场景中的人体动态具有相当重要的意义。然而,主流的人体姿态和形状估计方法主要侧重于视觉线索,在非视线环境中面临严重问题。由于床上场景包含复杂的人与环境接触,压力传感床单提供了一种无创、保护隐私的方法来捕捉接触面的压力分布,并在许多下游任务中展现了前景。然而,很少有研究关注床上人体网状结构的恢复。为了探索从感应到的压力分布重建人体网格的潜力,我们首先建立了一个包含 152K 张多模态同步图像的高质量时态床内人体姿态数据集 TIP。然后,我们提出了床上场景的标签生成管道,利用基于 SMPLify 的优化器生成可靠的 3D 网格标签。最后,我们介绍了 PIMesh,这是一种简单而有效的时间人体形状估计器,可直接从压力图像序列生成人体网格。我们进行了各种实验来评估 PIMesh 的性能,结果表明 PIMesh 在 TIP 数据集上归档了 79.17 毫米的关节位置误差。结果表明,压力传感床单可作为长期床内人体形状估计的一种有前途的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seeing through the Tactile
Humans spend about one-third of their lives resting. Reconstructing human dynamics in in-bed scenarios is of considerable significance in sleep studies, bedsore monitoring, and biomedical factor extractions. However, the mainstream human pose and shape estimation methods mainly focus on visual cues, facing serious issues in non-line-of-sight environments. Since in-bed scenarios contain complicated human-environment contact, pressure-sensing bedsheets provide a non-invasive and privacy-preserving approach to capture the pressure distribution on the contact surface, and have shown prospects in many downstream tasks. However, few studies focus on in-bed human mesh recovery. To explore the potential of reconstructing human meshes from the sensed pressure distribution, we first build a high-quality temporal human in-bed pose dataset, TIP, with 152K multi-modality synchronized images. We then propose a label generation pipeline for in-bed scenarios to generate reliable 3D mesh labels with a SMPLify-based optimizer. Finally, we present PIMesh, a simple yet effective temporal human shape estimator to directly generate human meshes from pressure image sequences. We conduct various experiments to evaluate PIMesh's performance, showing that PIMesh archives 79.17mm joint position errors on our TIP dataset. The results demonstrate that the pressure-sensing bedsheet could be a promising alternative for long-term in-bed human shape estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies Computer Science-Computer Networks and Communications
CiteScore
9.10
自引率
0.00%
发文量
154
期刊最新文献
Talk2Care: An LLM-based Voice Assistant for Communication between Healthcare Providers and Older Adults A Digital Companion Architecture for Ambient Intelligence Waving Hand as Infrared Source for Ubiquitous Gas Sensing PPG-Hear: A Practical Eavesdropping Attack with Photoplethysmography Sensors User-directed Assembly Code Transformations Enabling Efficient Batteryless Arduino Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1