Qi Meng, Tao Qin, Huanran Miao, Ge Zhang, Qian Zhang
{"title":"钴(III)氢化物 HAT 介导的手性吡咯烷的对映选择性分子内氢化途径","authors":"Qi Meng, Tao Qin, Huanran Miao, Ge Zhang, Qian Zhang","doi":"10.1007/s11426-023-1882-5","DOIUrl":null,"url":null,"abstract":"<div><p>Enantioenriched pyrrolidines and derivatives are ubiquitous substructures in compounds of importance to medicinal and biological chemistry. Herein, we report an efficient cobalt-catalyzed intramolecular asymmetric hydroamination reaction that produces chiral pyrrolidines with good to excellent yield and enantiocontrol. Compared with previously reported radical-involved methodologies for enantioenriched pyrrolidines, these conditions feature two elegant versatilities, enabling (1) the use of cobalt-catalyzed hydrogen atom transfer (HAT) to generate organocobalt intermediates that bring radical reaction to organometallic chemistry, and (2) enantioselective intramolecular C–N bond forging through an S<sub>N</sub>2-like displacement involving dynamic kinetic resolution (DKR). This approach provides a new alternative and efficient methodology for enantioselective radical-involved C–N bond construction that can be used in the synthesis of both chiral pyrrolidines and homologous nitrogen heterocycles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"67 6","pages":"2002 - 2008"},"PeriodicalIF":10.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cobalt(III) hydride HAT mediated enantioselective intramolecular hydroamination access to chiral pyrrolidines\",\"authors\":\"Qi Meng, Tao Qin, Huanran Miao, Ge Zhang, Qian Zhang\",\"doi\":\"10.1007/s11426-023-1882-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enantioenriched pyrrolidines and derivatives are ubiquitous substructures in compounds of importance to medicinal and biological chemistry. Herein, we report an efficient cobalt-catalyzed intramolecular asymmetric hydroamination reaction that produces chiral pyrrolidines with good to excellent yield and enantiocontrol. Compared with previously reported radical-involved methodologies for enantioenriched pyrrolidines, these conditions feature two elegant versatilities, enabling (1) the use of cobalt-catalyzed hydrogen atom transfer (HAT) to generate organocobalt intermediates that bring radical reaction to organometallic chemistry, and (2) enantioselective intramolecular C–N bond forging through an S<sub>N</sub>2-like displacement involving dynamic kinetic resolution (DKR). This approach provides a new alternative and efficient methodology for enantioselective radical-involved C–N bond construction that can be used in the synthesis of both chiral pyrrolidines and homologous nitrogen heterocycles.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":772,\"journal\":{\"name\":\"Science China Chemistry\",\"volume\":\"67 6\",\"pages\":\"2002 - 2008\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11426-023-1882-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-023-1882-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cobalt(III) hydride HAT mediated enantioselective intramolecular hydroamination access to chiral pyrrolidines
Enantioenriched pyrrolidines and derivatives are ubiquitous substructures in compounds of importance to medicinal and biological chemistry. Herein, we report an efficient cobalt-catalyzed intramolecular asymmetric hydroamination reaction that produces chiral pyrrolidines with good to excellent yield and enantiocontrol. Compared with previously reported radical-involved methodologies for enantioenriched pyrrolidines, these conditions feature two elegant versatilities, enabling (1) the use of cobalt-catalyzed hydrogen atom transfer (HAT) to generate organocobalt intermediates that bring radical reaction to organometallic chemistry, and (2) enantioselective intramolecular C–N bond forging through an SN2-like displacement involving dynamic kinetic resolution (DKR). This approach provides a new alternative and efficient methodology for enantioselective radical-involved C–N bond construction that can be used in the synthesis of both chiral pyrrolidines and homologous nitrogen heterocycles.
期刊介绍:
Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field.
Categories of articles include:
Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry.
Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies.
Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.