M. I. Younis, Xiaofeng Ren, Zina T. Alkanan, A. Altemimi, Khaled F. Mahmoud, Samer H. Siam, T. Abedelmaksoud
{"title":"通过添加冷冻干燥的决明子提取物凝聚剂提高鲜橙汁的质量特性","authors":"M. I. Younis, Xiaofeng Ren, Zina T. Alkanan, A. Altemimi, Khaled F. Mahmoud, Samer H. Siam, T. Abedelmaksoud","doi":"10.37077/25200860.2024.37.1.02","DOIUrl":null,"url":null,"abstract":"This study investigated the impact of freeze-dried coacervates at various concentrations (0.5, 1, and 1.5%) on physicochemical and microbiological properties of orange juice. Either 60% ethanol freeze-dried coacervates (EFC) or absolute ethanol freeze-dried coacervates (AFC) were used. The addition of EFC or AFC to orange juice did not significantly (p<0.05) affect pH, viscosity, or electric conductivity, as pH was unchanged for a 0.5% concentration and slightly increased from 3.99 to 4.01 at 1% and 1.5% concentrations. After adding AFC and EFC, viscosity were 52, 53, and 53 mPas at 0.5, 1, and 1.5% concentrations, respectively. Electric conductivity increased from 0.278 s.m-1 (control) to 0.334, 0.347, and 0.375 s.m-1 at 0.5, 1, and 1.5% concentrations after adding EFC, while were 0.325, 0.335, and 0.373 s.m-1 at the same concentration after adding AFC, respectively. However, after adding EFC, total phenolic content increased to 77.25, 115.96, and 154.95 mg.100mL-1, total flavonoid content (TFC)increased to 34.76, 52.18, and 69.73 mg.100mL-1, and antioxidant activity (AA) enhanced to 70.36, 74.36, and 79.58% at concentrations 0.5, 1, and 1.5%, respectively. Also, after adding AFC, total phenolic content increased to 79.26, 117.78, and 156.25 mg.100mL-1, TFC increased to 35.67, 53.00, and 70.31 mg.100mL-1, and AA enhanced to 71.65, 75.84, and 81.21% at concentrations 0.5, 1, and 1.5%, respectively. At concentrations 0.5, 1, and 1.5%, EFC decreased total plate count (TPC) to 2.12, 2.02, and 1.78 log cfu.mL-1, respectively and mold and yeast counts decreased to 1.5, 1.35, and 1.1 log cfu.mL-1, respectively. Also, adding AFC caused TPC to decrease to 2.18, 2.04, and 1.84 log cfu.mL-1, respectively and mold and yeast count decreased to 1.53, 1.33, and 1.12 log cfu.mL-1, respectively. Overall, the results indicate that adding EFC or AFC to fresh orange juice can enhance its nutritional and microbiological qualities without degrading its sensory qualities.","PeriodicalId":8700,"journal":{"name":"Basrah Journal of Agricultural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Quality Properties of Fresh Orange Juice through the Addition of Freeze-Dried Cassia javanica Extracts’ Coacervates\",\"authors\":\"M. I. Younis, Xiaofeng Ren, Zina T. Alkanan, A. Altemimi, Khaled F. Mahmoud, Samer H. Siam, T. Abedelmaksoud\",\"doi\":\"10.37077/25200860.2024.37.1.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the impact of freeze-dried coacervates at various concentrations (0.5, 1, and 1.5%) on physicochemical and microbiological properties of orange juice. Either 60% ethanol freeze-dried coacervates (EFC) or absolute ethanol freeze-dried coacervates (AFC) were used. The addition of EFC or AFC to orange juice did not significantly (p<0.05) affect pH, viscosity, or electric conductivity, as pH was unchanged for a 0.5% concentration and slightly increased from 3.99 to 4.01 at 1% and 1.5% concentrations. After adding AFC and EFC, viscosity were 52, 53, and 53 mPas at 0.5, 1, and 1.5% concentrations, respectively. Electric conductivity increased from 0.278 s.m-1 (control) to 0.334, 0.347, and 0.375 s.m-1 at 0.5, 1, and 1.5% concentrations after adding EFC, while were 0.325, 0.335, and 0.373 s.m-1 at the same concentration after adding AFC, respectively. However, after adding EFC, total phenolic content increased to 77.25, 115.96, and 154.95 mg.100mL-1, total flavonoid content (TFC)increased to 34.76, 52.18, and 69.73 mg.100mL-1, and antioxidant activity (AA) enhanced to 70.36, 74.36, and 79.58% at concentrations 0.5, 1, and 1.5%, respectively. Also, after adding AFC, total phenolic content increased to 79.26, 117.78, and 156.25 mg.100mL-1, TFC increased to 35.67, 53.00, and 70.31 mg.100mL-1, and AA enhanced to 71.65, 75.84, and 81.21% at concentrations 0.5, 1, and 1.5%, respectively. At concentrations 0.5, 1, and 1.5%, EFC decreased total plate count (TPC) to 2.12, 2.02, and 1.78 log cfu.mL-1, respectively and mold and yeast counts decreased to 1.5, 1.35, and 1.1 log cfu.mL-1, respectively. Also, adding AFC caused TPC to decrease to 2.18, 2.04, and 1.84 log cfu.mL-1, respectively and mold and yeast count decreased to 1.53, 1.33, and 1.12 log cfu.mL-1, respectively. Overall, the results indicate that adding EFC or AFC to fresh orange juice can enhance its nutritional and microbiological qualities without degrading its sensory qualities.\",\"PeriodicalId\":8700,\"journal\":{\"name\":\"Basrah Journal of Agricultural Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basrah Journal of Agricultural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37077/25200860.2024.37.1.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basrah Journal of Agricultural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37077/25200860.2024.37.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Enhancing Quality Properties of Fresh Orange Juice through the Addition of Freeze-Dried Cassia javanica Extracts’ Coacervates
This study investigated the impact of freeze-dried coacervates at various concentrations (0.5, 1, and 1.5%) on physicochemical and microbiological properties of orange juice. Either 60% ethanol freeze-dried coacervates (EFC) or absolute ethanol freeze-dried coacervates (AFC) were used. The addition of EFC or AFC to orange juice did not significantly (p<0.05) affect pH, viscosity, or electric conductivity, as pH was unchanged for a 0.5% concentration and slightly increased from 3.99 to 4.01 at 1% and 1.5% concentrations. After adding AFC and EFC, viscosity were 52, 53, and 53 mPas at 0.5, 1, and 1.5% concentrations, respectively. Electric conductivity increased from 0.278 s.m-1 (control) to 0.334, 0.347, and 0.375 s.m-1 at 0.5, 1, and 1.5% concentrations after adding EFC, while were 0.325, 0.335, and 0.373 s.m-1 at the same concentration after adding AFC, respectively. However, after adding EFC, total phenolic content increased to 77.25, 115.96, and 154.95 mg.100mL-1, total flavonoid content (TFC)increased to 34.76, 52.18, and 69.73 mg.100mL-1, and antioxidant activity (AA) enhanced to 70.36, 74.36, and 79.58% at concentrations 0.5, 1, and 1.5%, respectively. Also, after adding AFC, total phenolic content increased to 79.26, 117.78, and 156.25 mg.100mL-1, TFC increased to 35.67, 53.00, and 70.31 mg.100mL-1, and AA enhanced to 71.65, 75.84, and 81.21% at concentrations 0.5, 1, and 1.5%, respectively. At concentrations 0.5, 1, and 1.5%, EFC decreased total plate count (TPC) to 2.12, 2.02, and 1.78 log cfu.mL-1, respectively and mold and yeast counts decreased to 1.5, 1.35, and 1.1 log cfu.mL-1, respectively. Also, adding AFC caused TPC to decrease to 2.18, 2.04, and 1.84 log cfu.mL-1, respectively and mold and yeast count decreased to 1.53, 1.33, and 1.12 log cfu.mL-1, respectively. Overall, the results indicate that adding EFC or AFC to fresh orange juice can enhance its nutritional and microbiological qualities without degrading its sensory qualities.