氮化对通过阴极电弧物理气相沉积成型的 CrN、AlTiN 和 CrN/AlTiN 涂层 X45CrMoV5-3-1 工具钢的附着力和磨损行为的影响研究

Gülşah Aktaş Çelik, Konstantinos Fountas, Ş. Atapek, Ş. Polat, Eleni Kamoutsi, Anna D. Zervaki
{"title":"氮化对通过阴极电弧物理气相沉积成型的 CrN、AlTiN 和 CrN/AlTiN 涂层 X45CrMoV5-3-1 工具钢的附着力和磨损行为的影响研究","authors":"Gülşah Aktaş Çelik, Konstantinos Fountas, Ş. Atapek, Ş. Polat, Eleni Kamoutsi, Anna D. Zervaki","doi":"10.3390/lubricants12050170","DOIUrl":null,"url":null,"abstract":"Monolayer (CrN, AlTiN) and bilayer (CrN/AlTiN) coatings are formed on the surface of conventional heat-treated and gas-nitrided X45CrMoV5-3-1 tool steel via Cathodic Arc Physical Vapor Deposition (CAPVD), and the adhesion characteristics and room- and high-temperature wear behavior of the coatings are compared with those of the un-nitrided ones. Scratch tests on the coatings show that the bilayer coating exhibits better adhesion behavior compared to monolayer ones, and the adhesion is further increased in all coatings due to the high load carrying capacity of the diffusion layer formed by the nitriding process. Dry friction tests performed at room temperature reveal that, among ceramic-based coatings, the coating system with a high adhesion has the lowest specific wear rate (0.06 × 10−6 mm3/N·m), and not only the surface hardness but also the nitriding process is important for reducing this rate. Studies on wear surfaces indicate that the bilayer coating structure has a tendency to remove the surface over a longer period of time. Hot wear tests performed at a temperature (450 °C) corresponding to aluminum extrusion conditions show that high friction coefficient values (>1) are reached due to aluminum transfer from the counterpart material to the surface and failure develops through droplet delamination. Adhesion and tribological tests indicate that the best performance among the systems studied belongs to the steel–CrN/AlTiN system and this performance can be further increased via the nitriding process.","PeriodicalId":502914,"journal":{"name":"Lubricants","volume":" 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Nitriding Effect on the Adhesion and Wear Behavior of CrN-, AlTiN-, and CrN/AlTiN-Coated X45CrMoV5-3-1 Tool Steel Formed Via Cathodic Arc Physical Vapor Deposition\",\"authors\":\"Gülşah Aktaş Çelik, Konstantinos Fountas, Ş. Atapek, Ş. Polat, Eleni Kamoutsi, Anna D. Zervaki\",\"doi\":\"10.3390/lubricants12050170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monolayer (CrN, AlTiN) and bilayer (CrN/AlTiN) coatings are formed on the surface of conventional heat-treated and gas-nitrided X45CrMoV5-3-1 tool steel via Cathodic Arc Physical Vapor Deposition (CAPVD), and the adhesion characteristics and room- and high-temperature wear behavior of the coatings are compared with those of the un-nitrided ones. Scratch tests on the coatings show that the bilayer coating exhibits better adhesion behavior compared to monolayer ones, and the adhesion is further increased in all coatings due to the high load carrying capacity of the diffusion layer formed by the nitriding process. Dry friction tests performed at room temperature reveal that, among ceramic-based coatings, the coating system with a high adhesion has the lowest specific wear rate (0.06 × 10−6 mm3/N·m), and not only the surface hardness but also the nitriding process is important for reducing this rate. Studies on wear surfaces indicate that the bilayer coating structure has a tendency to remove the surface over a longer period of time. Hot wear tests performed at a temperature (450 °C) corresponding to aluminum extrusion conditions show that high friction coefficient values (>1) are reached due to aluminum transfer from the counterpart material to the surface and failure develops through droplet delamination. Adhesion and tribological tests indicate that the best performance among the systems studied belongs to the steel–CrN/AlTiN system and this performance can be further increased via the nitriding process.\",\"PeriodicalId\":502914,\"journal\":{\"name\":\"Lubricants\",\"volume\":\" 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants12050170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants12050170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过阴极电弧物理气相沉积(CAPVD)在传统热处理和气体氮化 X45CrMoV5-3-1 工具钢表面形成了单层(CrN、AlTiN)和双层(CrN/AlTiN)涂层,并将涂层的附着特性、室温和高温磨损行为与未氮化涂层进行了比较。涂层划痕测试表明,与单层涂层相比,双层涂层具有更好的附着力,而且由于氮化工艺形成的扩散层具有较高的承载能力,所有涂层的附着力都得到了进一步提高。室温下进行的干摩擦试验表明,在陶瓷基涂层中,附着力高的涂层系统的比磨损率(0.06 × 10-6 mm3/N-m)最低,要降低比磨损率,不仅要考虑表面硬度,氮化工艺也很重要。对磨损表面的研究表明,双层涂层结构有在较长时间内去除表面的趋势。在与铝挤压条件相对应的温度(450 °C)下进行的热磨损测试表明,由于铝从对应材料转移到表面,摩擦系数值很高(>1),并通过液滴分层产生失效。附着力和摩擦学测试表明,在所研究的体系中,钢-CrN/AlTiN 体系的性能最好,通过氮化工艺还可以进一步提高这种性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Nitriding Effect on the Adhesion and Wear Behavior of CrN-, AlTiN-, and CrN/AlTiN-Coated X45CrMoV5-3-1 Tool Steel Formed Via Cathodic Arc Physical Vapor Deposition
Monolayer (CrN, AlTiN) and bilayer (CrN/AlTiN) coatings are formed on the surface of conventional heat-treated and gas-nitrided X45CrMoV5-3-1 tool steel via Cathodic Arc Physical Vapor Deposition (CAPVD), and the adhesion characteristics and room- and high-temperature wear behavior of the coatings are compared with those of the un-nitrided ones. Scratch tests on the coatings show that the bilayer coating exhibits better adhesion behavior compared to monolayer ones, and the adhesion is further increased in all coatings due to the high load carrying capacity of the diffusion layer formed by the nitriding process. Dry friction tests performed at room temperature reveal that, among ceramic-based coatings, the coating system with a high adhesion has the lowest specific wear rate (0.06 × 10−6 mm3/N·m), and not only the surface hardness but also the nitriding process is important for reducing this rate. Studies on wear surfaces indicate that the bilayer coating structure has a tendency to remove the surface over a longer period of time. Hot wear tests performed at a temperature (450 °C) corresponding to aluminum extrusion conditions show that high friction coefficient values (>1) are reached due to aluminum transfer from the counterpart material to the surface and failure develops through droplet delamination. Adhesion and tribological tests indicate that the best performance among the systems studied belongs to the steel–CrN/AlTiN system and this performance can be further increased via the nitriding process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Electroplastic-Assisted Grinding on Surface Quality of Ductile Iron Friction and Wear Mechanisms of Ti3SiC2/Cu Composites under the Synergistic Effect of Velocity–Load Field at 800 °C Tribological Properties of PEEK and Its Composite Material under Oil Lubrication Oxidation and Flammability Tests for Grape (Vitis vinifera L.) Seed Oil Molecular Dynamics Simulation and Experimental Study of Friction and Wear Characteristics of Carbon Nanotube-Reinforced Nitrile Butadiene Rubber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1