高脂蛋白(a)筛查算法策略的开发和多国验证

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Nature cardiovascular research Pub Date : 2024-05-09 DOI:10.1038/s44161-024-00469-1
Arya Aminorroaya, Lovedeep S. Dhingra, Evangelos K. Oikonomou, Seyedmohammad Saadatagah, Phyllis Thangaraj, Sumukh Vasisht Shankar, Erica S. Spatz, Rohan Khera
{"title":"高脂蛋白(a)筛查算法策略的开发和多国验证","authors":"Arya Aminorroaya, Lovedeep S. Dhingra, Evangelos K. Oikonomou, Seyedmohammad Saadatagah, Phyllis Thangaraj, Sumukh Vasisht Shankar, Erica S. Spatz, Rohan Khera","doi":"10.1038/s44161-024-00469-1","DOIUrl":null,"url":null,"abstract":"Elevated lipoprotein (a) (Lp(a)) is associated with premature atherosclerotic cardiovascular disease. However, fewer than 0.5% of individuals undergo Lp(a) testing, limiting the evaluation and use of novel targeted therapeutics currently under development. Here we describe the development of a machine learning model for targeted screening for elevated Lp(a) (≥150 nmol l−1) in the UK Biobank (N = 456,815), the largest cohort with protocolized Lp(a) testing. We externally validated the model in 3 large cohort studies, ARIC (N = 14,484), CARDIA (N = 4,124) and MESA (N = 4,672). The model, Algorithmic Risk Inspection for Screening Elevated Lp(a) (ARISE), reduced the number needed to test to find one individual with elevated Lp(a) by up to 67.3%, based on the probability threshold, with consistent performance across external validation cohorts. ARISE could be used to optimize screening for elevated Lp(a) using commonly available clinical features, with the potential for its deployment in electronic health records to enhance the yield of Lp(a) testing in real-world settings. Elevated Lp(a) is an independent atherosclerosis risk factor that is not routinely measured in the general population. Aminorroaya et al. develop and validate a machine learning model, ARISE, that allows for the detection of elevated Lp(a) using commonly available clinical features from electronic records.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 5","pages":"558-566"},"PeriodicalIF":9.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and multinational validation of an algorithmic strategy for high Lp(a) screening\",\"authors\":\"Arya Aminorroaya, Lovedeep S. Dhingra, Evangelos K. Oikonomou, Seyedmohammad Saadatagah, Phyllis Thangaraj, Sumukh Vasisht Shankar, Erica S. Spatz, Rohan Khera\",\"doi\":\"10.1038/s44161-024-00469-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Elevated lipoprotein (a) (Lp(a)) is associated with premature atherosclerotic cardiovascular disease. However, fewer than 0.5% of individuals undergo Lp(a) testing, limiting the evaluation and use of novel targeted therapeutics currently under development. Here we describe the development of a machine learning model for targeted screening for elevated Lp(a) (≥150 nmol l−1) in the UK Biobank (N = 456,815), the largest cohort with protocolized Lp(a) testing. We externally validated the model in 3 large cohort studies, ARIC (N = 14,484), CARDIA (N = 4,124) and MESA (N = 4,672). The model, Algorithmic Risk Inspection for Screening Elevated Lp(a) (ARISE), reduced the number needed to test to find one individual with elevated Lp(a) by up to 67.3%, based on the probability threshold, with consistent performance across external validation cohorts. ARISE could be used to optimize screening for elevated Lp(a) using commonly available clinical features, with the potential for its deployment in electronic health records to enhance the yield of Lp(a) testing in real-world settings. Elevated Lp(a) is an independent atherosclerosis risk factor that is not routinely measured in the general population. Aminorroaya et al. develop and validate a machine learning model, ARISE, that allows for the detection of elevated Lp(a) using commonly available clinical features from electronic records.\",\"PeriodicalId\":74245,\"journal\":{\"name\":\"Nature cardiovascular research\",\"volume\":\"3 5\",\"pages\":\"558-566\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature cardiovascular research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44161-024-00469-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00469-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

脂蛋白(a)(Lp(a))升高与过早发生动脉粥样硬化性心血管疾病有关。然而,接受脂蛋白(a)检测的人不到 0.5%,这限制了目前正在开发的新型靶向疗法的评估和使用。在此,我们介绍了在英国生物库(N = 456,815 人)中开发的机器学习模型,该模型用于靶向筛查 Lp(a)升高(≥150 nmol l-1),英国生物库是进行 Lp(a)检测的最大队列。我们在 3 项大型队列研究中对该模型进行了外部验证,这 3 项研究分别是 ARIC(N = 14,484)、CARDIA(N = 4,124)和 MESA(N = 4,672)。根据概率阈值,筛查脂蛋白(a)升高的算法风险检测模型(ARISE)可将发现一名脂蛋白(a)升高患者所需的检测次数最多减少 67.3%,并且在外部验证队列中表现一致。ARISE可用于利用常见的临床特征优化脂蛋白(a)升高的筛查,并有可能应用于电子健康记录,以提高实际环境中脂蛋白(a)检测的收益。脂蛋白(a)升高是一个独立的动脉粥样硬化风险因素,但在普通人群中并未得到常规测量。Aminorroaya 等人开发并验证了一种名为 ARISE 的机器学习模型,该模型可利用电子记录中常见的临床特征检测脂蛋白(a)的升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and multinational validation of an algorithmic strategy for high Lp(a) screening
Elevated lipoprotein (a) (Lp(a)) is associated with premature atherosclerotic cardiovascular disease. However, fewer than 0.5% of individuals undergo Lp(a) testing, limiting the evaluation and use of novel targeted therapeutics currently under development. Here we describe the development of a machine learning model for targeted screening for elevated Lp(a) (≥150 nmol l−1) in the UK Biobank (N = 456,815), the largest cohort with protocolized Lp(a) testing. We externally validated the model in 3 large cohort studies, ARIC (N = 14,484), CARDIA (N = 4,124) and MESA (N = 4,672). The model, Algorithmic Risk Inspection for Screening Elevated Lp(a) (ARISE), reduced the number needed to test to find one individual with elevated Lp(a) by up to 67.3%, based on the probability threshold, with consistent performance across external validation cohorts. ARISE could be used to optimize screening for elevated Lp(a) using commonly available clinical features, with the potential for its deployment in electronic health records to enhance the yield of Lp(a) testing in real-world settings. Elevated Lp(a) is an independent atherosclerosis risk factor that is not routinely measured in the general population. Aminorroaya et al. develop and validate a machine learning model, ARISE, that allows for the detection of elevated Lp(a) using commonly available clinical features from electronic records.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
The tRNA methyltransferase Mettl1 governs ketogenesis through translational regulation and drives metabolic reprogramming in cardiomyocyte maturation. tRNA methylation drives early postnatal cardiomyocyte maturation. Integrative proteomic analyses across common cardiac diseases yield mechanistic insights and enhanced prediction. Genetic and phenotypic architecture of human myocardial trabeculation. Intrinsic GATA4 expression sensitizes the aortic root to dilation in a Loeys-Dietz syndrome mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1