{"title":"化学品租赁公司(Ch.L.)与舍伍德阴谋","authors":"G. Karakatsanis, Christos Makropoulos","doi":"10.3390/resources13050065","DOIUrl":null,"url":null,"abstract":"Although the Circular Economy (CE) has made remarkable technological progress by offering a wide range of alternative engineering solutions, an obstacle for its large-scale commercialization is nested in the adoption of those business and financial models that accurately depict the value generated from resource recovery. Recovering a resource from a waste matrix conserves natural reserves in situ by reducing demand for virgin resources, as well as conserving environmental carrying capacities by reducing waste discharges. The standard business model for resource recovery is Industrial Symbiosis (IS), where industries organize in clusters and allocate the process of waste matrices to achieve the recovery of a valuable resource at an optimal cost. Our work develops a coherent microeconomic architecture of Chemical Leasing (Ch.L.) contracts within the analytical framework of the Sherwood Plot (SP) for recovering a Value-Added Compound (VAC) from a wastewater matrix. The SP depicts the relationship between the VAC’s dilution in the wastewater matrix and its cost of recovery. ChL is engineered on the SP as a financial contract, motivating industrial synergies for delivering the VAC at the target dilution level at the market’s minimum cost and with mutual profits. In this context, we develop a ChL market typology where information completeness on which industry is most cost-efficient in recovering a VAC at every dilution level determines market dominance via a Kullback–Leibler Divergence (DKL) metric. In turn, we model how payoffs are allocated between industries via three ChL contract pricing systems, their profitability limits, and their fitting potential by market type. Finally, we discuss the emerging applications of ChL financial engineering in relation to three vital pillars of resource recovery and natural capital conservation.","PeriodicalId":37723,"journal":{"name":"Resources","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Leasing (Ch.L.) and the Sherwood Plot\",\"authors\":\"G. Karakatsanis, Christos Makropoulos\",\"doi\":\"10.3390/resources13050065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the Circular Economy (CE) has made remarkable technological progress by offering a wide range of alternative engineering solutions, an obstacle for its large-scale commercialization is nested in the adoption of those business and financial models that accurately depict the value generated from resource recovery. Recovering a resource from a waste matrix conserves natural reserves in situ by reducing demand for virgin resources, as well as conserving environmental carrying capacities by reducing waste discharges. The standard business model for resource recovery is Industrial Symbiosis (IS), where industries organize in clusters and allocate the process of waste matrices to achieve the recovery of a valuable resource at an optimal cost. Our work develops a coherent microeconomic architecture of Chemical Leasing (Ch.L.) contracts within the analytical framework of the Sherwood Plot (SP) for recovering a Value-Added Compound (VAC) from a wastewater matrix. The SP depicts the relationship between the VAC’s dilution in the wastewater matrix and its cost of recovery. ChL is engineered on the SP as a financial contract, motivating industrial synergies for delivering the VAC at the target dilution level at the market’s minimum cost and with mutual profits. In this context, we develop a ChL market typology where information completeness on which industry is most cost-efficient in recovering a VAC at every dilution level determines market dominance via a Kullback–Leibler Divergence (DKL) metric. In turn, we model how payoffs are allocated between industries via three ChL contract pricing systems, their profitability limits, and their fitting potential by market type. Finally, we discuss the emerging applications of ChL financial engineering in relation to three vital pillars of resource recovery and natural capital conservation.\",\"PeriodicalId\":37723,\"journal\":{\"name\":\"Resources\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.3390/resources13050065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3390/resources13050065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Although the Circular Economy (CE) has made remarkable technological progress by offering a wide range of alternative engineering solutions, an obstacle for its large-scale commercialization is nested in the adoption of those business and financial models that accurately depict the value generated from resource recovery. Recovering a resource from a waste matrix conserves natural reserves in situ by reducing demand for virgin resources, as well as conserving environmental carrying capacities by reducing waste discharges. The standard business model for resource recovery is Industrial Symbiosis (IS), where industries organize in clusters and allocate the process of waste matrices to achieve the recovery of a valuable resource at an optimal cost. Our work develops a coherent microeconomic architecture of Chemical Leasing (Ch.L.) contracts within the analytical framework of the Sherwood Plot (SP) for recovering a Value-Added Compound (VAC) from a wastewater matrix. The SP depicts the relationship between the VAC’s dilution in the wastewater matrix and its cost of recovery. ChL is engineered on the SP as a financial contract, motivating industrial synergies for delivering the VAC at the target dilution level at the market’s minimum cost and with mutual profits. In this context, we develop a ChL market typology where information completeness on which industry is most cost-efficient in recovering a VAC at every dilution level determines market dominance via a Kullback–Leibler Divergence (DKL) metric. In turn, we model how payoffs are allocated between industries via three ChL contract pricing systems, their profitability limits, and their fitting potential by market type. Finally, we discuss the emerging applications of ChL financial engineering in relation to three vital pillars of resource recovery and natural capital conservation.
ResourcesEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.20
自引率
6.10%
发文量
0
审稿时长
11 weeks
期刊介绍:
Resources (ISSN 2079-9276) is an international, scholarly open access journal on the topic of natural resources. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and methodical details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: manuscripts regarding research proposals and research ideas will be particularly welcomed, electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Subject Areas: natural resources, water resources, mineral resources, energy resources, land resources, plant and animal resources, genetic resources, ecology resources, resource management and policy, resources conservation and recycling.