关于从有限混合分布生成随机样本的简短说明

Axioms Pub Date : 2024-05-08 DOI:10.3390/axioms13050307
L. Al-Labadi, Anna Ly
{"title":"关于从有限混合分布生成随机样本的简短说明","authors":"L. Al-Labadi, Anna Ly","doi":"10.3390/axioms13050307","DOIUrl":null,"url":null,"abstract":"Computational statistics is a critical skill for professionals in fields such as data science, statistics, and related disciplines. One essential aspect of computational statistics is the ability to simulate random variables from specified probability distributions. Commonly employed techniques for sampling random variables include the inverse transform method, acceptance–rejection method, and Box–Muller transformation, all of which rely on sampling from the uniform (0,1) distribution. A significant concept in statistics is the finite mixture model, characterized by a convex combination of multiple probability density functions. In this paper, we introduce a modified version of the composition method, a standard approach for sampling finite mixture models. Our modification offers the advantage of relying on sampling from the uniform (0,1) distribution, aligning with prevalent methods in computational statistics. This alignment simplifies teaching computational statistics courses, as well as having other benefits. We offer several examples to illustrate the approach.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"5 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Short Note on Generating a Random Sample from Finite Mixture Distributions\",\"authors\":\"L. Al-Labadi, Anna Ly\",\"doi\":\"10.3390/axioms13050307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational statistics is a critical skill for professionals in fields such as data science, statistics, and related disciplines. One essential aspect of computational statistics is the ability to simulate random variables from specified probability distributions. Commonly employed techniques for sampling random variables include the inverse transform method, acceptance–rejection method, and Box–Muller transformation, all of which rely on sampling from the uniform (0,1) distribution. A significant concept in statistics is the finite mixture model, characterized by a convex combination of multiple probability density functions. In this paper, we introduce a modified version of the composition method, a standard approach for sampling finite mixture models. Our modification offers the advantage of relying on sampling from the uniform (0,1) distribution, aligning with prevalent methods in computational statistics. This alignment simplifies teaching computational statistics courses, as well as having other benefits. We offer several examples to illustrate the approach.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"5 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13050307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算统计学是数据科学、统计学和相关学科等领域专业人员的一项重要技能。计算统计学的一个重要方面是模拟指定概率分布的随机变量的能力。常用的随机变量采样技术包括反变换法、接受-拒绝法和箱-穆勒变换,所有这些技术都依赖于从均匀分布(0,1)中采样。统计学中的一个重要概念是有限混合模型,其特点是多个概率密度函数的凸组合。在本文中,我们介绍了组合法的一个改进版本,这是一种对有限混合物模型进行采样的标准方法。我们的改进版具有从均匀(0,1)分布采样的优势,与计算统计中流行的方法一致。这种一致性简化了计算统计课程的教学,同时还有其他好处。我们举几个例子来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Short Note on Generating a Random Sample from Finite Mixture Distributions
Computational statistics is a critical skill for professionals in fields such as data science, statistics, and related disciplines. One essential aspect of computational statistics is the ability to simulate random variables from specified probability distributions. Commonly employed techniques for sampling random variables include the inverse transform method, acceptance–rejection method, and Box–Muller transformation, all of which rely on sampling from the uniform (0,1) distribution. A significant concept in statistics is the finite mixture model, characterized by a convex combination of multiple probability density functions. In this paper, we introduce a modified version of the composition method, a standard approach for sampling finite mixture models. Our modification offers the advantage of relying on sampling from the uniform (0,1) distribution, aligning with prevalent methods in computational statistics. This alignment simplifies teaching computational statistics courses, as well as having other benefits. We offer several examples to illustrate the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometry of Torsion Gerbes and Flat Twisted Vector Bundles The Unified Description of Abstract Convexity Structures Modelling Up-and-Down Moves of Binomial Option Pricing with Intuitionistic Fuzzy Numbers The Impact of Quasi-Conformal Curvature Tensor on Warped Product Manifolds On Lebesgue Constants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1