{"title":"桑叶抗高脂肪饮食诱导的 C57/6J 小鼠糖尿病新靶点的网络药理学预测和代谢组学验证","authors":"Fan Qiu, Yu-Ping Chen, Hong-Yan Wu, Ji-Hu Sun","doi":"10.1155/2024/7652471","DOIUrl":null,"url":null,"abstract":"<p>Diabetes mellitus (DM) is an endocrine-metabolic disorder that has limited approaches to treat effectively. <i>Morus alba</i> L., also known as mulberry, is a well-known medicinal plant, and its branch bark has shown hypoglycemic activity. It is rich in antioxidant and anti-inflammatory ingredients. In this study, we used metabolomics combined with network pharmacology to investigate the molecular mechanism and potential key targets of mulberry branch bark powder (MBBP) for treating DM. Serum metabolomics was performed to analyze the differences in metabolites and enrich metabolic pathways. Network pharmacology, based on systems biology tools, was applied to generate the pathway-target-compound network. Integrated analyses were then used to screen for key targets. To verify the obtained key targets, we used a molecular docking method and experimental validation. Our findings revealed that thirty-five endogenous metabolites contributed to the therapeutic impact of MBBP against DM. The analysis of 10 hub genes in the compound-target network partially supported the enrichment of metabolic pathways. Further analysis focused on two compounds (eugenol and mulberrofuran A) and three key targets (NOS2, MAOA, and CYP1A1). This study explores the active compounds of MBBP against DM and provides a novel perspective for improving DM treatment based on key targets.</p>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Pharmacology Prediction and Metabolomics Validation of the Novel Targets of Morus alba L. against High-Fat Diet-Induced Diabetes Mellitus in C57/6J Mice\",\"authors\":\"Fan Qiu, Yu-Ping Chen, Hong-Yan Wu, Ji-Hu Sun\",\"doi\":\"10.1155/2024/7652471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Diabetes mellitus (DM) is an endocrine-metabolic disorder that has limited approaches to treat effectively. <i>Morus alba</i> L., also known as mulberry, is a well-known medicinal plant, and its branch bark has shown hypoglycemic activity. It is rich in antioxidant and anti-inflammatory ingredients. In this study, we used metabolomics combined with network pharmacology to investigate the molecular mechanism and potential key targets of mulberry branch bark powder (MBBP) for treating DM. Serum metabolomics was performed to analyze the differences in metabolites and enrich metabolic pathways. Network pharmacology, based on systems biology tools, was applied to generate the pathway-target-compound network. Integrated analyses were then used to screen for key targets. To verify the obtained key targets, we used a molecular docking method and experimental validation. Our findings revealed that thirty-five endogenous metabolites contributed to the therapeutic impact of MBBP against DM. The analysis of 10 hub genes in the compound-target network partially supported the enrichment of metabolic pathways. Further analysis focused on two compounds (eugenol and mulberrofuran A) and three key targets (NOS2, MAOA, and CYP1A1). This study explores the active compounds of MBBP against DM and provides a novel perspective for improving DM treatment based on key targets.</p>\",\"PeriodicalId\":15802,\"journal\":{\"name\":\"Journal of Food Biochemistry\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7652471\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7652471","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Network Pharmacology Prediction and Metabolomics Validation of the Novel Targets of Morus alba L. against High-Fat Diet-Induced Diabetes Mellitus in C57/6J Mice
Diabetes mellitus (DM) is an endocrine-metabolic disorder that has limited approaches to treat effectively. Morus alba L., also known as mulberry, is a well-known medicinal plant, and its branch bark has shown hypoglycemic activity. It is rich in antioxidant and anti-inflammatory ingredients. In this study, we used metabolomics combined with network pharmacology to investigate the molecular mechanism and potential key targets of mulberry branch bark powder (MBBP) for treating DM. Serum metabolomics was performed to analyze the differences in metabolites and enrich metabolic pathways. Network pharmacology, based on systems biology tools, was applied to generate the pathway-target-compound network. Integrated analyses were then used to screen for key targets. To verify the obtained key targets, we used a molecular docking method and experimental validation. Our findings revealed that thirty-five endogenous metabolites contributed to the therapeutic impact of MBBP against DM. The analysis of 10 hub genes in the compound-target network partially supported the enrichment of metabolic pathways. Further analysis focused on two compounds (eugenol and mulberrofuran A) and three key targets (NOS2, MAOA, and CYP1A1). This study explores the active compounds of MBBP against DM and provides a novel perspective for improving DM treatment based on key targets.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality