使用改进的卷积神经网络(CNN)检测肺癌

Cari Cari, Mohtar Yunianto, Aisyah Ajibah Rahmah
{"title":"使用改进的卷积神经网络(CNN)检测肺癌","authors":"Cari Cari, Mohtar Yunianto, Aisyah Ajibah Rahmah","doi":"10.13057/ijap.v14i1.77032","DOIUrl":null,"url":null,"abstract":"Image processing is used to classify lung images with malignant or normal nodules. The Convolutional Neural Network (CNN) method is often used to classify images. This study uses a modified CNN architecture with various layers, filters, batch size, dropout, and epoch values. Variations were made to determine the best accuracy value and reduce the overfitting value of the proposed CNN architecture. This study implements the method using the Keras library with the Python programming language. The data is in the form of CT-Scan images of lung cancer and normal lungs. The results of several experiments from the proposed model produce an accuracy value of 95% using three layers, 128 filters on the first layer, 256 on the second layer, and 512 filters on the third layer, then with 32 batch sizes, 0.5 dropout.","PeriodicalId":31930,"journal":{"name":"Indonesian Journal of Applied Physics","volume":"23 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lung Cancer Detection Using a Modified Convolutional Neural Network (CNN)\",\"authors\":\"Cari Cari, Mohtar Yunianto, Aisyah Ajibah Rahmah\",\"doi\":\"10.13057/ijap.v14i1.77032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image processing is used to classify lung images with malignant or normal nodules. The Convolutional Neural Network (CNN) method is often used to classify images. This study uses a modified CNN architecture with various layers, filters, batch size, dropout, and epoch values. Variations were made to determine the best accuracy value and reduce the overfitting value of the proposed CNN architecture. This study implements the method using the Keras library with the Python programming language. The data is in the form of CT-Scan images of lung cancer and normal lungs. The results of several experiments from the proposed model produce an accuracy value of 95% using three layers, 128 filters on the first layer, 256 on the second layer, and 512 filters on the third layer, then with 32 batch sizes, 0.5 dropout.\",\"PeriodicalId\":31930,\"journal\":{\"name\":\"Indonesian Journal of Applied Physics\",\"volume\":\"23 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13057/ijap.v14i1.77032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13057/ijap.v14i1.77032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像处理用于对肺部图像中的恶性或正常结节进行分类。卷积神经网络(CNN)方法常用于图像分类。本研究使用的是经过改进的 CNN 架构,其中包含不同的层、过滤器、批次大小、剔除和历时值。这些变化是为了确定最佳准确度值,并降低所提议的 CNN 架构的过拟合值。本研究使用 Python 编程语言的 Keras 库实现了该方法。数据形式为肺癌和正常肺部的 CT 扫描图像。使用三层模型,第一层使用 128 个过滤器,第二层使用 256 个过滤器,第三层使用 512 个过滤器,然后使用 32 个批次大小和 0.5 个 dropout,得出的结果显示,所提议模型的准确率达到 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lung Cancer Detection Using a Modified Convolutional Neural Network (CNN)
Image processing is used to classify lung images with malignant or normal nodules. The Convolutional Neural Network (CNN) method is often used to classify images. This study uses a modified CNN architecture with various layers, filters, batch size, dropout, and epoch values. Variations were made to determine the best accuracy value and reduce the overfitting value of the proposed CNN architecture. This study implements the method using the Keras library with the Python programming language. The data is in the form of CT-Scan images of lung cancer and normal lungs. The results of several experiments from the proposed model produce an accuracy value of 95% using three layers, 128 filters on the first layer, 256 on the second layer, and 512 filters on the third layer, then with 32 batch sizes, 0.5 dropout.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
28
审稿时长
12 weeks
期刊最新文献
A spin current detecting device working in the drift-diffusion and degenerate regimes Determining The Crystallite Size of TiO2/EG-Water XRD Data Using the Scherrer Equation Synthesis of Material Composite rGO-TIO2 From Coconut Shells by Sol-Gel Methods as Photocatalyst A Comparison of CNN-based Image Feature Extractors for Weld Defects Classification Optimizing the Composition of Basalt and Heat Treatment of Fly Ash-Based Mullite Ceramics Using the Taguchi Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1