Saidulu Inamanamelluri, D. Dhanasekaran, Radhika Bhaskar
{"title":"利用电压摆动自调节匹配线技术设计和实现低功耗内容可寻址存储器","authors":"Saidulu Inamanamelluri, D. Dhanasekaran, Radhika Bhaskar","doi":"10.1016/j.suscom.2024.101002","DOIUrl":null,"url":null,"abstract":"<div><p>One of the essential components of computer systems is memory. A primary hindrance in this regard is the memory speed. Content Addressable Memory (CAM) speeds up transformations and table lookups in network routers and data processing systems for hardware search engines. Parallel seeks using the CAM (Content Addressable Memory) model are often used to enhance memory performance. This paper uses the voltage swing self-adjustable match line (VSSA-ML) technique to describe low-power content addressable memory design and implementation. This project decreases Match Line (ML) power loss by reducing load capacitance and ML voltage swing. A simple ML voltage detector is proposed instead of the complex, fully different detector that allows ML voltage swings near zero. This paper presents 6 T 8×8 CAM arrays using VSSA-ML Technique using Tanner tools 45-nm technology. On the other hand, this design enhances robustness in processing variations by self-adjusting voltage swings. Implementation analysis states that the described mode 6 T 8×8 CAM design utilized fewer MOSFETs than the 8 T 8×8 CAM array.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"43 ","pages":"Article 101002"},"PeriodicalIF":3.8000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low power content addressable memory designing and implementation using voltage swing self adjustable match line technique\",\"authors\":\"Saidulu Inamanamelluri, D. Dhanasekaran, Radhika Bhaskar\",\"doi\":\"10.1016/j.suscom.2024.101002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the essential components of computer systems is memory. A primary hindrance in this regard is the memory speed. Content Addressable Memory (CAM) speeds up transformations and table lookups in network routers and data processing systems for hardware search engines. Parallel seeks using the CAM (Content Addressable Memory) model are often used to enhance memory performance. This paper uses the voltage swing self-adjustable match line (VSSA-ML) technique to describe low-power content addressable memory design and implementation. This project decreases Match Line (ML) power loss by reducing load capacitance and ML voltage swing. A simple ML voltage detector is proposed instead of the complex, fully different detector that allows ML voltage swings near zero. This paper presents 6 T 8×8 CAM arrays using VSSA-ML Technique using Tanner tools 45-nm technology. On the other hand, this design enhances robustness in processing variations by self-adjusting voltage swings. Implementation analysis states that the described mode 6 T 8×8 CAM design utilized fewer MOSFETs than the 8 T 8×8 CAM array.</p></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"43 \",\"pages\":\"Article 101002\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210537924000477\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537924000477","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
内存是计算机系统的重要组成部分之一。这方面的一个主要障碍是内存速度。内容可寻址内存(CAM)可加快网络路由器和数据处理系统中硬件搜索引擎的转换和查表速度。使用 CAM(内容可寻址内存)模型的并行寻址通常用于提高内存性能。本文采用电压摆动自调整匹配线(VSSA-ML)技术来描述低功耗内容寻址存储器的设计和实现。该项目通过减少负载电容和 ML 电压摆幅来降低匹配线 (ML) 功率损耗。本文提出了一种简单的 ML 电压检测器,而不是复杂的、完全不同的检测器,后者允许 ML 电压摆幅接近零。本文介绍了使用 VSSA-ML 技术的 6 T 8×8 CAM 阵列,采用 Tanner 工具 45 纳米技术。另一方面,这种设计通过自我调整电压波动,增强了处理变化的鲁棒性。实施分析表明,与 8 T 8×8 CAM 阵列相比,所述模式 6 T 8×8 CAM 设计使用的 MOSFET 更少。
Low power content addressable memory designing and implementation using voltage swing self adjustable match line technique
One of the essential components of computer systems is memory. A primary hindrance in this regard is the memory speed. Content Addressable Memory (CAM) speeds up transformations and table lookups in network routers and data processing systems for hardware search engines. Parallel seeks using the CAM (Content Addressable Memory) model are often used to enhance memory performance. This paper uses the voltage swing self-adjustable match line (VSSA-ML) technique to describe low-power content addressable memory design and implementation. This project decreases Match Line (ML) power loss by reducing load capacitance and ML voltage swing. A simple ML voltage detector is proposed instead of the complex, fully different detector that allows ML voltage swings near zero. This paper presents 6 T 8×8 CAM arrays using VSSA-ML Technique using Tanner tools 45-nm technology. On the other hand, this design enhances robustness in processing variations by self-adjusting voltage swings. Implementation analysis states that the described mode 6 T 8×8 CAM design utilized fewer MOSFETs than the 8 T 8×8 CAM array.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.