Ali Mohandesi;David J. Knudsen;Susan Skone;Richard B. Langley;Andrew W. Yau
{"title":"利用高采样率蜂群回波(e-POP)测量低纬度原地不规则性和顶层 GPS 信号强度的功率谱特征","authors":"Ali Mohandesi;David J. Knudsen;Susan Skone;Richard B. Langley;Andrew W. Yau","doi":"10.1029/2023RS007885","DOIUrl":null,"url":null,"abstract":"Ionospheric density structures at low latitudes range in size from thousands of kilometers down to a few meters. Radio frequency (RF) signals, such as those from global navigation satellite systems, that propagate through irregularities suffer from rapid fluctuations in phase and intensity, known as scintillations. In this study, we use the high-sample-rate measurements of the Swarm Echo (CASSIOPE/e-POP) satellite's GPS Occultation (GAP-O) receiver taken after its antenna was re-oriented to vertical-pointing, simultaneously with e-POP Ion Mass Spectrometer surface current observations as a proxy for plasma density, to obtain the spectral characteristics of GPS signal intensity and in-situ irregularities at altitudes from 350 to 1,280 km. We show that the power spectra of both measurements can generally be characterized by a power law. In the case of density irregularities, the spectral index with the highest occurrence rate is around 1.7, which is consistent with previous studies. Also, all the power spectra of GPS signal intensity in this study show a single spectral index near 2. Moreover, roll-off frequencies estimated in this work range from 0.4 to 2.5 Hz, which is significantly higher than Fresnel frequencies calculated from ground GPS receivers at low latitudes (between 0.2 and 0.45 Hz). Part of this increase is due to the 8 km/s orbital velocity of Swarm Echo near perigee. Another key difference is that variations in the GPS signals in this study are dominated by the topside ionosphere, whereas GPS signals received from ground are affected mostly by the relatively dense F-region plasma in the 250-350 km altitudinal range.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 5","pages":"1-11"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power spectral characteristics of in-situ irregularities and topside GPS signal intensity at low latitudes using high-sample-rate swarm echo (e-POP) measurements\",\"authors\":\"Ali Mohandesi;David J. Knudsen;Susan Skone;Richard B. Langley;Andrew W. Yau\",\"doi\":\"10.1029/2023RS007885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionospheric density structures at low latitudes range in size from thousands of kilometers down to a few meters. Radio frequency (RF) signals, such as those from global navigation satellite systems, that propagate through irregularities suffer from rapid fluctuations in phase and intensity, known as scintillations. In this study, we use the high-sample-rate measurements of the Swarm Echo (CASSIOPE/e-POP) satellite's GPS Occultation (GAP-O) receiver taken after its antenna was re-oriented to vertical-pointing, simultaneously with e-POP Ion Mass Spectrometer surface current observations as a proxy for plasma density, to obtain the spectral characteristics of GPS signal intensity and in-situ irregularities at altitudes from 350 to 1,280 km. We show that the power spectra of both measurements can generally be characterized by a power law. In the case of density irregularities, the spectral index with the highest occurrence rate is around 1.7, which is consistent with previous studies. Also, all the power spectra of GPS signal intensity in this study show a single spectral index near 2. Moreover, roll-off frequencies estimated in this work range from 0.4 to 2.5 Hz, which is significantly higher than Fresnel frequencies calculated from ground GPS receivers at low latitudes (between 0.2 and 0.45 Hz). Part of this increase is due to the 8 km/s orbital velocity of Swarm Echo near perigee. Another key difference is that variations in the GPS signals in this study are dominated by the topside ionosphere, whereas GPS signals received from ground are affected mostly by the relatively dense F-region plasma in the 250-350 km altitudinal range.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 5\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542684/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10542684/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Power spectral characteristics of in-situ irregularities and topside GPS signal intensity at low latitudes using high-sample-rate swarm echo (e-POP) measurements
Ionospheric density structures at low latitudes range in size from thousands of kilometers down to a few meters. Radio frequency (RF) signals, such as those from global navigation satellite systems, that propagate through irregularities suffer from rapid fluctuations in phase and intensity, known as scintillations. In this study, we use the high-sample-rate measurements of the Swarm Echo (CASSIOPE/e-POP) satellite's GPS Occultation (GAP-O) receiver taken after its antenna was re-oriented to vertical-pointing, simultaneously with e-POP Ion Mass Spectrometer surface current observations as a proxy for plasma density, to obtain the spectral characteristics of GPS signal intensity and in-situ irregularities at altitudes from 350 to 1,280 km. We show that the power spectra of both measurements can generally be characterized by a power law. In the case of density irregularities, the spectral index with the highest occurrence rate is around 1.7, which is consistent with previous studies. Also, all the power spectra of GPS signal intensity in this study show a single spectral index near 2. Moreover, roll-off frequencies estimated in this work range from 0.4 to 2.5 Hz, which is significantly higher than Fresnel frequencies calculated from ground GPS receivers at low latitudes (between 0.2 and 0.45 Hz). Part of this increase is due to the 8 km/s orbital velocity of Swarm Echo near perigee. Another key difference is that variations in the GPS signals in this study are dominated by the topside ionosphere, whereas GPS signals received from ground are affected mostly by the relatively dense F-region plasma in the 250-350 km altitudinal range.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.