Xiao Lin , Hua Yang , Yi Xia , Kang Wu , Fengcheng Chu , Huan Zhou , Huajian Gao , Lei Yang
{"title":"机械生物材料:利用机械生物学原理促进组织修复和再生","authors":"Xiao Lin , Hua Yang , Yi Xia , Kang Wu , Fengcheng Chu , Huan Zhou , Huajian Gao , Lei Yang","doi":"10.1016/j.mbm.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical stimuli are known to play critical roles in mediating tissue repair and regeneration. Recently, this knowledge has led to a paradigm shift toward proactive programming of biological functionalities of biomaterials by leveraging mechanics–geometry–biofunction relationships, which are beginning to shape the newly emerging field of mechanobiomaterials. To profile this emerging field, this article aims to elucidate the fundamental principles in modulating biological responses with material–tissue mechanical interactions, illustrate recent findings on the relationships between material properties and biological responses, discuss the importance of mathematical/physical models and numerical simulations in optimizing material properties and geometry, and outline design strategies for mechanobiomaterials and their potential for tissue repair and regeneration. Given that the field of mechanobiomaterials is still in its infancy, this article also discusses open questions and challenges that need to be addressed.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000421/pdfft?md5=320fe996100a6e4b52edd7711af259b4&pid=1-s2.0-S2949907024000421-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mechanobiomaterials: Harnessing mechanobiology principles for tissue repair and regeneration\",\"authors\":\"Xiao Lin , Hua Yang , Yi Xia , Kang Wu , Fengcheng Chu , Huan Zhou , Huajian Gao , Lei Yang\",\"doi\":\"10.1016/j.mbm.2024.100079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanical stimuli are known to play critical roles in mediating tissue repair and regeneration. Recently, this knowledge has led to a paradigm shift toward proactive programming of biological functionalities of biomaterials by leveraging mechanics–geometry–biofunction relationships, which are beginning to shape the newly emerging field of mechanobiomaterials. To profile this emerging field, this article aims to elucidate the fundamental principles in modulating biological responses with material–tissue mechanical interactions, illustrate recent findings on the relationships between material properties and biological responses, discuss the importance of mathematical/physical models and numerical simulations in optimizing material properties and geometry, and outline design strategies for mechanobiomaterials and their potential for tissue repair and regeneration. Given that the field of mechanobiomaterials is still in its infancy, this article also discusses open questions and challenges that need to be addressed.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":\"2 3\",\"pages\":\"Article 100079\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000421/pdfft?md5=320fe996100a6e4b52edd7711af259b4&pid=1-s2.0-S2949907024000421-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanobiomaterials: Harnessing mechanobiology principles for tissue repair and regeneration
Mechanical stimuli are known to play critical roles in mediating tissue repair and regeneration. Recently, this knowledge has led to a paradigm shift toward proactive programming of biological functionalities of biomaterials by leveraging mechanics–geometry–biofunction relationships, which are beginning to shape the newly emerging field of mechanobiomaterials. To profile this emerging field, this article aims to elucidate the fundamental principles in modulating biological responses with material–tissue mechanical interactions, illustrate recent findings on the relationships between material properties and biological responses, discuss the importance of mathematical/physical models and numerical simulations in optimizing material properties and geometry, and outline design strategies for mechanobiomaterials and their potential for tissue repair and regeneration. Given that the field of mechanobiomaterials is still in its infancy, this article also discusses open questions and challenges that need to be addressed.