H. Pfnür , C. Tegenkamp , S. Sanna , E. Jeckelmann , M. Horn-von Hoegen , U. Bovensiepen , N. Esser , W.G. Schmidt , M. Dähne , S. Wippermann , F. Bechstedt , M. Bode , R. Claessen , R. Ernstorfer , C. Hogan , M. Ligges , A. Pucci , J. Schäfer , E. Speiser , M. Wolf , J. Wollschläger
{"title":"基底上的原子线:一维和二维之间的物理学","authors":"H. Pfnür , C. Tegenkamp , S. Sanna , E. Jeckelmann , M. Horn-von Hoegen , U. Bovensiepen , N. Esser , W.G. Schmidt , M. Dähne , S. Wippermann , F. Bechstedt , M. Bode , R. Claessen , R. Ernstorfer , C. Hogan , M. Ligges , A. Pucci , J. Schäfer , E. Speiser , M. Wolf , J. Wollschläger","doi":"10.1016/j.surfrep.2024.100629","DOIUrl":null,"url":null,"abstract":"<div><p>Wires having a width of one or two atoms are the smallest possible physical objects that may exhibit one-dimensional properties. In order to be experimentally accessible at finite temperatures, such wires must stabilized by interactions in two and even three dimensions. These interactions modify and partly destroy their one-dimensional properties, but introduce new phenomena of coupling and correlation that entangle both charge and spin. We explore this fascinating field by first giving an overview of the present status of theoretical knowledge on 1D physics, including coupling between chains and to the substrate, before we set out for experimental results on ordered arrays of atomic wires on both flat and vicinal Si(111) surfaces comprising Si(111)-In, Si(hhk)-Au, Si(557)-Pb, Si(557)-Ag, on Ge(001)-Au and of rare earth silicide wires. While for these systems structural, spectroscopic and (magneto-)conductive properties are in the focus, including temperature- and concentration-induced phase transitions, explicit dynamics on the femto- and picosecond time scales were explored for the modified Peierls transition in indium chains on Si(111). All these systems are characterized by strong correlations, including spin, that are extended over whole terraces and partly beyond, so that small geometric changes lead to large modifications of their electronic properties. Thus this coupling in one (1D), two (2D) (and even three) dimensions results in a wealth of phase transitions and transient quasi-1D conductance. As extremes, modified quasi-1D properties survive, as in the Si(111)-In system, whereas strong Fermi nesting results in entanglement of spin and charge between terraces for Si(557)-Pb, so that spin orbit density waves across the steps are formed.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"79 2","pages":"Article 100629"},"PeriodicalIF":8.2000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167572924000086/pdfft?md5=3f93565d3c35692737d64c9df36caa55&pid=1-s2.0-S0167572924000086-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Atomic wires on substrates: Physics between one and two dimensions\",\"authors\":\"H. Pfnür , C. Tegenkamp , S. Sanna , E. Jeckelmann , M. Horn-von Hoegen , U. Bovensiepen , N. Esser , W.G. Schmidt , M. Dähne , S. Wippermann , F. Bechstedt , M. Bode , R. Claessen , R. Ernstorfer , C. Hogan , M. Ligges , A. Pucci , J. Schäfer , E. Speiser , M. Wolf , J. Wollschläger\",\"doi\":\"10.1016/j.surfrep.2024.100629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wires having a width of one or two atoms are the smallest possible physical objects that may exhibit one-dimensional properties. In order to be experimentally accessible at finite temperatures, such wires must stabilized by interactions in two and even three dimensions. These interactions modify and partly destroy their one-dimensional properties, but introduce new phenomena of coupling and correlation that entangle both charge and spin. We explore this fascinating field by first giving an overview of the present status of theoretical knowledge on 1D physics, including coupling between chains and to the substrate, before we set out for experimental results on ordered arrays of atomic wires on both flat and vicinal Si(111) surfaces comprising Si(111)-In, Si(hhk)-Au, Si(557)-Pb, Si(557)-Ag, on Ge(001)-Au and of rare earth silicide wires. While for these systems structural, spectroscopic and (magneto-)conductive properties are in the focus, including temperature- and concentration-induced phase transitions, explicit dynamics on the femto- and picosecond time scales were explored for the modified Peierls transition in indium chains on Si(111). All these systems are characterized by strong correlations, including spin, that are extended over whole terraces and partly beyond, so that small geometric changes lead to large modifications of their electronic properties. Thus this coupling in one (1D), two (2D) (and even three) dimensions results in a wealth of phase transitions and transient quasi-1D conductance. As extremes, modified quasi-1D properties survive, as in the Si(111)-In system, whereas strong Fermi nesting results in entanglement of spin and charge between terraces for Si(557)-Pb, so that spin orbit density waves across the steps are formed.</p></div>\",\"PeriodicalId\":434,\"journal\":{\"name\":\"Surface Science Reports\",\"volume\":\"79 2\",\"pages\":\"Article 100629\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167572924000086/pdfft?md5=3f93565d3c35692737d64c9df36caa55&pid=1-s2.0-S0167572924000086-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167572924000086\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572924000086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Atomic wires on substrates: Physics between one and two dimensions
Wires having a width of one or two atoms are the smallest possible physical objects that may exhibit one-dimensional properties. In order to be experimentally accessible at finite temperatures, such wires must stabilized by interactions in two and even three dimensions. These interactions modify and partly destroy their one-dimensional properties, but introduce new phenomena of coupling and correlation that entangle both charge and spin. We explore this fascinating field by first giving an overview of the present status of theoretical knowledge on 1D physics, including coupling between chains and to the substrate, before we set out for experimental results on ordered arrays of atomic wires on both flat and vicinal Si(111) surfaces comprising Si(111)-In, Si(hhk)-Au, Si(557)-Pb, Si(557)-Ag, on Ge(001)-Au and of rare earth silicide wires. While for these systems structural, spectroscopic and (magneto-)conductive properties are in the focus, including temperature- and concentration-induced phase transitions, explicit dynamics on the femto- and picosecond time scales were explored for the modified Peierls transition in indium chains on Si(111). All these systems are characterized by strong correlations, including spin, that are extended over whole terraces and partly beyond, so that small geometric changes lead to large modifications of their electronic properties. Thus this coupling in one (1D), two (2D) (and even three) dimensions results in a wealth of phase transitions and transient quasi-1D conductance. As extremes, modified quasi-1D properties survive, as in the Si(111)-In system, whereas strong Fermi nesting results in entanglement of spin and charge between terraces for Si(557)-Pb, so that spin orbit density waves across the steps are formed.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.