利用工程数据为人工智能计算机视觉模型创建合成训练数据的流程

Sebastian Schwoch, Maximilian Peter Dammann, Johannes Georg Bartl, Maximilian Kretzschmar, Bernhard Saske, Kristin Paetzold-Byhain
{"title":"利用工程数据为人工智能计算机视觉模型创建合成训练数据的流程","authors":"Sebastian Schwoch, Maximilian Peter Dammann, Johannes Georg Bartl, Maximilian Kretzschmar, Bernhard Saske, Kristin Paetzold-Byhain","doi":"10.1017/pds.2024.226","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence-based Computer Vision models (AI-CV models) for object detection can support various applications over the entire lifecycle of machines and plants such as monitoring or maintenance tasks. Despite ongoing research on using engineering data to synthesize training data for AI-CV model development, there is a lack of process guidelines for the creation of such data. This paper proposes a synthetic training data creation process tailored to the particularities of an engineering context addressing challenges such as the domain gap and methods like domain randomization.","PeriodicalId":489438,"journal":{"name":"Proceedings of the Design Society","volume":"13 S2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a process for the creation of synthetic training data for AI-computer vision models utilizing engineering data\",\"authors\":\"Sebastian Schwoch, Maximilian Peter Dammann, Johannes Georg Bartl, Maximilian Kretzschmar, Bernhard Saske, Kristin Paetzold-Byhain\",\"doi\":\"10.1017/pds.2024.226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence-based Computer Vision models (AI-CV models) for object detection can support various applications over the entire lifecycle of machines and plants such as monitoring or maintenance tasks. Despite ongoing research on using engineering data to synthesize training data for AI-CV model development, there is a lack of process guidelines for the creation of such data. This paper proposes a synthetic training data creation process tailored to the particularities of an engineering context addressing challenges such as the domain gap and methods like domain randomization.\",\"PeriodicalId\":489438,\"journal\":{\"name\":\"Proceedings of the Design Society\",\"volume\":\"13 S2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Design Society\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.1017/pds.2024.226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Design Society","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1017/pds.2024.226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于物体检测的基于人工智能的计算机视觉模型(AI-CV 模型)可支持机器和工厂整个生命周期内的各种应用,如监控或维护任务。尽管目前正在研究如何利用工程数据合成用于开发 AI-CV 模型的训练数据,但缺乏创建此类数据的流程指南。本文针对工程环境的特殊性提出了一种合成训练数据创建流程,以应对领域差距和领域随机化等挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a process for the creation of synthetic training data for AI-computer vision models utilizing engineering data
Artificial Intelligence-based Computer Vision models (AI-CV models) for object detection can support various applications over the entire lifecycle of machines and plants such as monitoring or maintenance tasks. Despite ongoing research on using engineering data to synthesize training data for AI-CV model development, there is a lack of process guidelines for the creation of such data. This paper proposes a synthetic training data creation process tailored to the particularities of an engineering context addressing challenges such as the domain gap and methods like domain randomization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing lab-on-a-chip systems with attribute dependency graphs Implementing an open innovation process in the premium marine industry Variability in complex product/system design: case study in automotive industry Computing solution spaces for gear box design Machine learning-based virtual sensors for reduced energy consumption in frost-free refrigerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1