Voronoi 图 -- 改进的高维 Voronoi 图射线投射和积分方案

Alexander Sikorski, Martin Heida
{"title":"Voronoi 图 -- 改进的高维 Voronoi 图射线投射和积分方案","authors":"Alexander Sikorski, Martin Heida","doi":"arxiv-2405.10050","DOIUrl":null,"url":null,"abstract":"The computation of Voronoi Diagrams, or their dual Delauney triangulations is\ndifficult in high dimensions. In a recent publication Polianskii and Pokorny\npropose an iterative randomized algorithm facilitating the approximation of\nVoronoi tesselations in high dimensions. In this paper, we provide an improved\nvertex search method that is not only exact but even faster than the bisection\nmethod that was previously recommended. Building on this we also provide a\ndepth-first graph-traversal algorithm which allows us to compute the entire\nVoronoi diagram. This enables us to compare the outcomes with those of\nclassical algorithms like qHull, which we either match or marginally beat in\nterms of computation time. We furthermore show how the raycasting algorithm\nnaturally lends to a Monte Carlo approximation for the volume and boundary\nintegrals of the Voronoi cells, both of which are of importance for finite\nVolume methods. We compare the Monte-Carlo methods to the exact polygonal\nintegration, as well as a hybrid approximation scheme.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voronoi Graph -- Improved raycasting and integration schemes for high dimensional Voronoi diagrams\",\"authors\":\"Alexander Sikorski, Martin Heida\",\"doi\":\"arxiv-2405.10050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The computation of Voronoi Diagrams, or their dual Delauney triangulations is\\ndifficult in high dimensions. In a recent publication Polianskii and Pokorny\\npropose an iterative randomized algorithm facilitating the approximation of\\nVoronoi tesselations in high dimensions. In this paper, we provide an improved\\nvertex search method that is not only exact but even faster than the bisection\\nmethod that was previously recommended. Building on this we also provide a\\ndepth-first graph-traversal algorithm which allows us to compute the entire\\nVoronoi diagram. This enables us to compare the outcomes with those of\\nclassical algorithms like qHull, which we either match or marginally beat in\\nterms of computation time. We furthermore show how the raycasting algorithm\\nnaturally lends to a Monte Carlo approximation for the volume and boundary\\nintegrals of the Voronoi cells, both of which are of importance for finite\\nVolume methods. We compare the Monte-Carlo methods to the exact polygonal\\nintegration, as well as a hybrid approximation scheme.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.10050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.10050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高维度中,沃罗诺伊图或其对偶 Delauney 三角剖分的计算非常困难。Polianskii 和 Pokorny 在最近发表的一篇文章中提出了一种迭代随机算法,有助于在高维条件下逼近沃罗诺伊网格。在本文中,我们提供了一种改进的顶点搜索方法,它不仅精确,而且比之前推荐的分段法更快。在此基础上,我们还提供了一种深度优先的图遍历算法,它允许我们计算整个沃罗诺伊图。这样,我们就能将计算结果与 qHull 等经典算法进行比较,在计算时间方面,我们要么与之相当,要么略胜一筹。此外,我们还展示了射线投射算法如何自然地对 Voronoi 单元的体积和边界积分进行蒙特卡洛近似,这两点对于有限体积方法都非常重要。我们将蒙特卡洛方法与精确多边形积分以及混合近似方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voronoi Graph -- Improved raycasting and integration schemes for high dimensional Voronoi diagrams
The computation of Voronoi Diagrams, or their dual Delauney triangulations is difficult in high dimensions. In a recent publication Polianskii and Pokorny propose an iterative randomized algorithm facilitating the approximation of Voronoi tesselations in high dimensions. In this paper, we provide an improved vertex search method that is not only exact but even faster than the bisection method that was previously recommended. Building on this we also provide a depth-first graph-traversal algorithm which allows us to compute the entire Voronoi diagram. This enables us to compare the outcomes with those of classical algorithms like qHull, which we either match or marginally beat in terms of computation time. We furthermore show how the raycasting algorithm naturally lends to a Monte Carlo approximation for the volume and boundary integrals of the Voronoi cells, both of which are of importance for finite Volume methods. We compare the Monte-Carlo methods to the exact polygonal integration, as well as a hybrid approximation scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Minimum Plane Bichromatic Spanning Trees Evolving Distributions Under Local Motion New Lower Bound and Algorithms for Online Geometric Hitting Set Problem Computing shortest paths amid non-overlapping weighted disks Fast Comparative Analysis of Merge Trees Using Locality Sensitive Hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1